This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If an S.2 integral is bounded above, then it is real. (Contributed by Mario Carneiro, 28-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | itg2lecl | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐴 ∈ ℝ ∧ ( ∫2 ‘ 𝐹 ) ≤ 𝐴 ) → ( ∫2 ‘ 𝐹 ) ∈ ℝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itg2cl | ⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → ( ∫2 ‘ 𝐹 ) ∈ ℝ* ) | |
| 2 | 1 | 3ad2ant1 | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐴 ∈ ℝ ∧ ( ∫2 ‘ 𝐹 ) ≤ 𝐴 ) → ( ∫2 ‘ 𝐹 ) ∈ ℝ* ) |
| 3 | simp2 | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐴 ∈ ℝ ∧ ( ∫2 ‘ 𝐹 ) ≤ 𝐴 ) → 𝐴 ∈ ℝ ) | |
| 4 | itg2ge0 | ⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → 0 ≤ ( ∫2 ‘ 𝐹 ) ) | |
| 5 | 4 | 3ad2ant1 | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐴 ∈ ℝ ∧ ( ∫2 ‘ 𝐹 ) ≤ 𝐴 ) → 0 ≤ ( ∫2 ‘ 𝐹 ) ) |
| 6 | simp3 | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐴 ∈ ℝ ∧ ( ∫2 ‘ 𝐹 ) ≤ 𝐴 ) → ( ∫2 ‘ 𝐹 ) ≤ 𝐴 ) | |
| 7 | xrrege0 | ⊢ ( ( ( ( ∫2 ‘ 𝐹 ) ∈ ℝ* ∧ 𝐴 ∈ ℝ ) ∧ ( 0 ≤ ( ∫2 ‘ 𝐹 ) ∧ ( ∫2 ‘ 𝐹 ) ≤ 𝐴 ) ) → ( ∫2 ‘ 𝐹 ) ∈ ℝ ) | |
| 8 | 2 3 5 6 7 | syl22anc | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐴 ∈ ℝ ∧ ( ∫2 ‘ 𝐹 ) ≤ 𝐴 ) → ( ∫2 ‘ 𝐹 ) ∈ ℝ ) |