This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for itg2mono . (Contributed by Mario Carneiro, 16-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | itg2mono.1 | ⊢ 𝐺 = ( 𝑥 ∈ ℝ ↦ sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) | |
| itg2mono.2 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) ∈ MblFn ) | ||
| itg2mono.3 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,) +∞ ) ) | ||
| itg2mono.4 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) ∘r ≤ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) | ||
| itg2mono.5 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ ℕ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) | ||
| itg2mono.6 | ⊢ 𝑆 = sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) , ℝ* , < ) | ||
| itg2monolem2.7 | ⊢ ( 𝜑 → 𝑃 ∈ dom ∫1 ) | ||
| itg2monolem2.8 | ⊢ ( 𝜑 → 𝑃 ∘r ≤ 𝐺 ) | ||
| itg2monolem2.9 | ⊢ ( 𝜑 → ¬ ( ∫1 ‘ 𝑃 ) ≤ 𝑆 ) | ||
| Assertion | itg2monolem2 | ⊢ ( 𝜑 → 𝑆 ∈ ℝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itg2mono.1 | ⊢ 𝐺 = ( 𝑥 ∈ ℝ ↦ sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) | |
| 2 | itg2mono.2 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) ∈ MblFn ) | |
| 3 | itg2mono.3 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,) +∞ ) ) | |
| 4 | itg2mono.4 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) ∘r ≤ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) | |
| 5 | itg2mono.5 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ ℕ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) | |
| 6 | itg2mono.6 | ⊢ 𝑆 = sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) , ℝ* , < ) | |
| 7 | itg2monolem2.7 | ⊢ ( 𝜑 → 𝑃 ∈ dom ∫1 ) | |
| 8 | itg2monolem2.8 | ⊢ ( 𝜑 → 𝑃 ∘r ≤ 𝐺 ) | |
| 9 | itg2monolem2.9 | ⊢ ( 𝜑 → ¬ ( ∫1 ‘ 𝑃 ) ≤ 𝑆 ) | |
| 10 | icossicc | ⊢ ( 0 [,) +∞ ) ⊆ ( 0 [,] +∞ ) | |
| 11 | fss | ⊢ ( ( ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,) +∞ ) ∧ ( 0 [,) +∞ ) ⊆ ( 0 [,] +∞ ) ) → ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,] +∞ ) ) | |
| 12 | 3 10 11 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 13 | itg2cl | ⊢ ( ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,] +∞ ) → ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ∈ ℝ* ) | |
| 14 | 12 13 | syl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ∈ ℝ* ) |
| 15 | 14 | fmpttd | ⊢ ( 𝜑 → ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) : ℕ ⟶ ℝ* ) |
| 16 | 15 | frnd | ⊢ ( 𝜑 → ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ⊆ ℝ* ) |
| 17 | supxrcl | ⊢ ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ⊆ ℝ* → sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) , ℝ* , < ) ∈ ℝ* ) | |
| 18 | 16 17 | syl | ⊢ ( 𝜑 → sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) , ℝ* , < ) ∈ ℝ* ) |
| 19 | 6 18 | eqeltrid | ⊢ ( 𝜑 → 𝑆 ∈ ℝ* ) |
| 20 | itg1cl | ⊢ ( 𝑃 ∈ dom ∫1 → ( ∫1 ‘ 𝑃 ) ∈ ℝ ) | |
| 21 | 7 20 | syl | ⊢ ( 𝜑 → ( ∫1 ‘ 𝑃 ) ∈ ℝ ) |
| 22 | mnfxr | ⊢ -∞ ∈ ℝ* | |
| 23 | 22 | a1i | ⊢ ( 𝜑 → -∞ ∈ ℝ* ) |
| 24 | fveq2 | ⊢ ( 𝑛 = 1 → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 1 ) ) | |
| 25 | 24 | feq1d | ⊢ ( 𝑛 = 1 → ( ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,] +∞ ) ↔ ( 𝐹 ‘ 1 ) : ℝ ⟶ ( 0 [,] +∞ ) ) ) |
| 26 | 12 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 27 | 1nn | ⊢ 1 ∈ ℕ | |
| 28 | 27 | a1i | ⊢ ( 𝜑 → 1 ∈ ℕ ) |
| 29 | 25 26 28 | rspcdva | ⊢ ( 𝜑 → ( 𝐹 ‘ 1 ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 30 | itg2cl | ⊢ ( ( 𝐹 ‘ 1 ) : ℝ ⟶ ( 0 [,] +∞ ) → ( ∫2 ‘ ( 𝐹 ‘ 1 ) ) ∈ ℝ* ) | |
| 31 | 29 30 | syl | ⊢ ( 𝜑 → ( ∫2 ‘ ( 𝐹 ‘ 1 ) ) ∈ ℝ* ) |
| 32 | itg2ge0 | ⊢ ( ( 𝐹 ‘ 1 ) : ℝ ⟶ ( 0 [,] +∞ ) → 0 ≤ ( ∫2 ‘ ( 𝐹 ‘ 1 ) ) ) | |
| 33 | 29 32 | syl | ⊢ ( 𝜑 → 0 ≤ ( ∫2 ‘ ( 𝐹 ‘ 1 ) ) ) |
| 34 | mnflt0 | ⊢ -∞ < 0 | |
| 35 | 0xr | ⊢ 0 ∈ ℝ* | |
| 36 | xrltletr | ⊢ ( ( -∞ ∈ ℝ* ∧ 0 ∈ ℝ* ∧ ( ∫2 ‘ ( 𝐹 ‘ 1 ) ) ∈ ℝ* ) → ( ( -∞ < 0 ∧ 0 ≤ ( ∫2 ‘ ( 𝐹 ‘ 1 ) ) ) → -∞ < ( ∫2 ‘ ( 𝐹 ‘ 1 ) ) ) ) | |
| 37 | 22 35 31 36 | mp3an12i | ⊢ ( 𝜑 → ( ( -∞ < 0 ∧ 0 ≤ ( ∫2 ‘ ( 𝐹 ‘ 1 ) ) ) → -∞ < ( ∫2 ‘ ( 𝐹 ‘ 1 ) ) ) ) |
| 38 | 34 37 | mpani | ⊢ ( 𝜑 → ( 0 ≤ ( ∫2 ‘ ( 𝐹 ‘ 1 ) ) → -∞ < ( ∫2 ‘ ( 𝐹 ‘ 1 ) ) ) ) |
| 39 | 33 38 | mpd | ⊢ ( 𝜑 → -∞ < ( ∫2 ‘ ( 𝐹 ‘ 1 ) ) ) |
| 40 | 2fveq3 | ⊢ ( 𝑛 = 1 → ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) = ( ∫2 ‘ ( 𝐹 ‘ 1 ) ) ) | |
| 41 | eqid | ⊢ ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) | |
| 42 | fvex | ⊢ ( ∫2 ‘ ( 𝐹 ‘ 1 ) ) ∈ V | |
| 43 | 40 41 42 | fvmpt | ⊢ ( 1 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 1 ) = ( ∫2 ‘ ( 𝐹 ‘ 1 ) ) ) |
| 44 | 27 43 | ax-mp | ⊢ ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 1 ) = ( ∫2 ‘ ( 𝐹 ‘ 1 ) ) |
| 45 | 15 | ffnd | ⊢ ( 𝜑 → ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) Fn ℕ ) |
| 46 | fnfvelrn | ⊢ ( ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) Fn ℕ ∧ 1 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 1 ) ∈ ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) | |
| 47 | 45 27 46 | sylancl | ⊢ ( 𝜑 → ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 1 ) ∈ ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) |
| 48 | 44 47 | eqeltrrid | ⊢ ( 𝜑 → ( ∫2 ‘ ( 𝐹 ‘ 1 ) ) ∈ ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) |
| 49 | supxrub | ⊢ ( ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ⊆ ℝ* ∧ ( ∫2 ‘ ( 𝐹 ‘ 1 ) ) ∈ ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) → ( ∫2 ‘ ( 𝐹 ‘ 1 ) ) ≤ sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) , ℝ* , < ) ) | |
| 50 | 16 48 49 | syl2anc | ⊢ ( 𝜑 → ( ∫2 ‘ ( 𝐹 ‘ 1 ) ) ≤ sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) , ℝ* , < ) ) |
| 51 | 50 6 | breqtrrdi | ⊢ ( 𝜑 → ( ∫2 ‘ ( 𝐹 ‘ 1 ) ) ≤ 𝑆 ) |
| 52 | 23 31 19 39 51 | xrltletrd | ⊢ ( 𝜑 → -∞ < 𝑆 ) |
| 53 | 21 | rexrd | ⊢ ( 𝜑 → ( ∫1 ‘ 𝑃 ) ∈ ℝ* ) |
| 54 | xrltnle | ⊢ ( ( 𝑆 ∈ ℝ* ∧ ( ∫1 ‘ 𝑃 ) ∈ ℝ* ) → ( 𝑆 < ( ∫1 ‘ 𝑃 ) ↔ ¬ ( ∫1 ‘ 𝑃 ) ≤ 𝑆 ) ) | |
| 55 | 19 53 54 | syl2anc | ⊢ ( 𝜑 → ( 𝑆 < ( ∫1 ‘ 𝑃 ) ↔ ¬ ( ∫1 ‘ 𝑃 ) ≤ 𝑆 ) ) |
| 56 | 9 55 | mpbird | ⊢ ( 𝜑 → 𝑆 < ( ∫1 ‘ 𝑃 ) ) |
| 57 | 19 53 56 | xrltled | ⊢ ( 𝜑 → 𝑆 ≤ ( ∫1 ‘ 𝑃 ) ) |
| 58 | xrre | ⊢ ( ( ( 𝑆 ∈ ℝ* ∧ ( ∫1 ‘ 𝑃 ) ∈ ℝ ) ∧ ( -∞ < 𝑆 ∧ 𝑆 ≤ ( ∫1 ‘ 𝑃 ) ) ) → 𝑆 ∈ ℝ ) | |
| 59 | 19 21 52 57 58 | syl22anc | ⊢ ( 𝜑 → 𝑆 ∈ ℝ ) |