This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Monotone Convergence Theorem for nonnegative functions. If { ( Fn ) : n e. NN } is a monotone increasing sequence of positive, measurable, real-valued functions, and G is the pointwise limit of the sequence, then ( S.2G ) is the limit of the sequence { ( S.2( Fn ) ) : n e. NN } . (Contributed by Mario Carneiro, 16-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | itg2mono.1 | ⊢ 𝐺 = ( 𝑥 ∈ ℝ ↦ sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) | |
| itg2mono.2 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) ∈ MblFn ) | ||
| itg2mono.3 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,) +∞ ) ) | ||
| itg2mono.4 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) ∘r ≤ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) | ||
| itg2mono.5 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ ℕ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) | ||
| itg2mono.6 | ⊢ 𝑆 = sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) , ℝ* , < ) | ||
| Assertion | itg2mono | ⊢ ( 𝜑 → ( ∫2 ‘ 𝐺 ) = 𝑆 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itg2mono.1 | ⊢ 𝐺 = ( 𝑥 ∈ ℝ ↦ sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) | |
| 2 | itg2mono.2 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) ∈ MblFn ) | |
| 3 | itg2mono.3 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,) +∞ ) ) | |
| 4 | itg2mono.4 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) ∘r ≤ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) | |
| 5 | itg2mono.5 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ ℕ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) | |
| 6 | itg2mono.6 | ⊢ 𝑆 = sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) , ℝ* , < ) | |
| 7 | rge0ssre | ⊢ ( 0 [,) +∞ ) ⊆ ℝ | |
| 8 | fss | ⊢ ( ( ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,) +∞ ) ∧ ( 0 [,) +∞ ) ⊆ ℝ ) → ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ℝ ) | |
| 9 | 3 7 8 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ℝ ) |
| 10 | 9 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ℝ ) |
| 11 | 10 | an32s | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ℝ ) |
| 12 | 11 | fmpttd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) : ℕ ⟶ ℝ ) |
| 13 | 12 | frnd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ⊆ ℝ ) |
| 14 | 1nn | ⊢ 1 ∈ ℕ | |
| 15 | eqid | ⊢ ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) = ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) | |
| 16 | 15 11 | dmmptd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → dom ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) = ℕ ) |
| 17 | 14 16 | eleqtrrid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → 1 ∈ dom ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ) |
| 18 | 17 | ne0d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → dom ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ≠ ∅ ) |
| 19 | dm0rn0 | ⊢ ( dom ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) = ∅ ↔ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) = ∅ ) | |
| 20 | 19 | necon3bii | ⊢ ( dom ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ≠ ∅ ↔ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ≠ ∅ ) |
| 21 | 18 20 | sylib | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ≠ ∅ ) |
| 22 | 12 | ffnd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) Fn ℕ ) |
| 23 | breq1 | ⊢ ( 𝑧 = ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑚 ) → ( 𝑧 ≤ 𝑦 ↔ ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑚 ) ≤ 𝑦 ) ) | |
| 24 | 23 | ralrn | ⊢ ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) Fn ℕ → ( ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) 𝑧 ≤ 𝑦 ↔ ∀ 𝑚 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑚 ) ≤ 𝑦 ) ) |
| 25 | 22 24 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) 𝑧 ≤ 𝑦 ↔ ∀ 𝑚 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑚 ) ≤ 𝑦 ) ) |
| 26 | fveq2 | ⊢ ( 𝑛 = 𝑚 → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑚 ) ) | |
| 27 | 26 | fveq1d | ⊢ ( 𝑛 = 𝑚 → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) |
| 28 | fvex | ⊢ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ∈ V | |
| 29 | 27 15 28 | fvmpt | ⊢ ( 𝑚 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑚 ) = ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) |
| 30 | 29 | breq1d | ⊢ ( 𝑚 ∈ ℕ → ( ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑚 ) ≤ 𝑦 ↔ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ≤ 𝑦 ) ) |
| 31 | 30 | ralbiia | ⊢ ( ∀ 𝑚 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑚 ) ≤ 𝑦 ↔ ∀ 𝑚 ∈ ℕ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ≤ 𝑦 ) |
| 32 | 27 | breq1d | ⊢ ( 𝑛 = 𝑚 → ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ↔ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ≤ 𝑦 ) ) |
| 33 | 32 | cbvralvw | ⊢ ( ∀ 𝑛 ∈ ℕ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ↔ ∀ 𝑚 ∈ ℕ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ≤ 𝑦 ) |
| 34 | 31 33 | bitr4i | ⊢ ( ∀ 𝑚 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑚 ) ≤ 𝑦 ↔ ∀ 𝑛 ∈ ℕ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) |
| 35 | 25 34 | bitrdi | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) 𝑧 ≤ 𝑦 ↔ ∀ 𝑛 ∈ ℕ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) ) |
| 36 | 35 | rexbidv | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) 𝑧 ≤ 𝑦 ↔ ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ ℕ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) ) |
| 37 | 5 36 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) 𝑧 ≤ 𝑦 ) |
| 38 | 13 21 37 | suprcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ∈ ℝ ) |
| 39 | 38 | rexrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ∈ ℝ* ) |
| 40 | 0red | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → 0 ∈ ℝ ) | |
| 41 | fveq2 | ⊢ ( 𝑛 = 1 → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 1 ) ) | |
| 42 | 41 | feq1d | ⊢ ( 𝑛 = 1 → ( ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,) +∞ ) ↔ ( 𝐹 ‘ 1 ) : ℝ ⟶ ( 0 [,) +∞ ) ) ) |
| 43 | 3 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 44 | 14 | a1i | ⊢ ( 𝜑 → 1 ∈ ℕ ) |
| 45 | 42 43 44 | rspcdva | ⊢ ( 𝜑 → ( 𝐹 ‘ 1 ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 46 | 45 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 1 ) ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ) |
| 47 | elrege0 | ⊢ ( ( ( 𝐹 ‘ 1 ) ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ↔ ( ( ( 𝐹 ‘ 1 ) ‘ 𝑥 ) ∈ ℝ ∧ 0 ≤ ( ( 𝐹 ‘ 1 ) ‘ 𝑥 ) ) ) | |
| 48 | 46 47 | sylib | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ( ( 𝐹 ‘ 1 ) ‘ 𝑥 ) ∈ ℝ ∧ 0 ≤ ( ( 𝐹 ‘ 1 ) ‘ 𝑥 ) ) ) |
| 49 | 48 | simpld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 1 ) ‘ 𝑥 ) ∈ ℝ ) |
| 50 | 48 | simprd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → 0 ≤ ( ( 𝐹 ‘ 1 ) ‘ 𝑥 ) ) |
| 51 | 41 | fveq1d | ⊢ ( 𝑛 = 1 → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) = ( ( 𝐹 ‘ 1 ) ‘ 𝑥 ) ) |
| 52 | fvex | ⊢ ( ( 𝐹 ‘ 1 ) ‘ 𝑥 ) ∈ V | |
| 53 | 51 15 52 | fvmpt | ⊢ ( 1 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 1 ) = ( ( 𝐹 ‘ 1 ) ‘ 𝑥 ) ) |
| 54 | 14 53 | ax-mp | ⊢ ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 1 ) = ( ( 𝐹 ‘ 1 ) ‘ 𝑥 ) |
| 55 | fnfvelrn | ⊢ ( ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) Fn ℕ ∧ 1 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 1 ) ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ) | |
| 56 | 22 14 55 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 1 ) ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ) |
| 57 | 54 56 | eqeltrrid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 1 ) ‘ 𝑥 ) ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ) |
| 58 | 13 21 37 57 | suprubd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 1 ) ‘ 𝑥 ) ≤ sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) |
| 59 | 40 49 38 50 58 | letrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → 0 ≤ sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) |
| 60 | elxrge0 | ⊢ ( sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ∈ ( 0 [,] +∞ ) ↔ ( sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ∈ ℝ* ∧ 0 ≤ sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) ) | |
| 61 | 39 59 60 | sylanbrc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ∈ ( 0 [,] +∞ ) ) |
| 62 | 61 1 | fmptd | ⊢ ( 𝜑 → 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 63 | itg2cl | ⊢ ( 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) → ( ∫2 ‘ 𝐺 ) ∈ ℝ* ) | |
| 64 | 62 63 | syl | ⊢ ( 𝜑 → ( ∫2 ‘ 𝐺 ) ∈ ℝ* ) |
| 65 | icossicc | ⊢ ( 0 [,) +∞ ) ⊆ ( 0 [,] +∞ ) | |
| 66 | fss | ⊢ ( ( ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,) +∞ ) ∧ ( 0 [,) +∞ ) ⊆ ( 0 [,] +∞ ) ) → ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,] +∞ ) ) | |
| 67 | 3 65 66 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 68 | itg2cl | ⊢ ( ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,] +∞ ) → ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ∈ ℝ* ) | |
| 69 | 67 68 | syl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ∈ ℝ* ) |
| 70 | 69 | fmpttd | ⊢ ( 𝜑 → ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) : ℕ ⟶ ℝ* ) |
| 71 | 70 | frnd | ⊢ ( 𝜑 → ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ⊆ ℝ* ) |
| 72 | supxrcl | ⊢ ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ⊆ ℝ* → sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) , ℝ* , < ) ∈ ℝ* ) | |
| 73 | 71 72 | syl | ⊢ ( 𝜑 → sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) , ℝ* , < ) ∈ ℝ* ) |
| 74 | 6 73 | eqeltrid | ⊢ ( 𝜑 → 𝑆 ∈ ℝ* ) |
| 75 | 2 | adantlr | ⊢ ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐺 ) ∧ ¬ ( ∫1 ‘ 𝑓 ) ≤ 𝑆 ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) ∈ MblFn ) |
| 76 | 3 | adantlr | ⊢ ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐺 ) ∧ ¬ ( ∫1 ‘ 𝑓 ) ≤ 𝑆 ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 77 | 4 | adantlr | ⊢ ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐺 ) ∧ ¬ ( ∫1 ‘ 𝑓 ) ≤ 𝑆 ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) ∘r ≤ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) |
| 78 | 5 | adantlr | ⊢ ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐺 ) ∧ ¬ ( ∫1 ‘ 𝑓 ) ≤ 𝑆 ) ) ∧ 𝑥 ∈ ℝ ) → ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ ℕ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) |
| 79 | simprll | ⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐺 ) ∧ ¬ ( ∫1 ‘ 𝑓 ) ≤ 𝑆 ) ) → 𝑓 ∈ dom ∫1 ) | |
| 80 | simprlr | ⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐺 ) ∧ ¬ ( ∫1 ‘ 𝑓 ) ≤ 𝑆 ) ) → 𝑓 ∘r ≤ 𝐺 ) | |
| 81 | simprr | ⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐺 ) ∧ ¬ ( ∫1 ‘ 𝑓 ) ≤ 𝑆 ) ) → ¬ ( ∫1 ‘ 𝑓 ) ≤ 𝑆 ) | |
| 82 | 1 75 76 77 78 6 79 80 81 | itg2monolem3 | ⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐺 ) ∧ ¬ ( ∫1 ‘ 𝑓 ) ≤ 𝑆 ) ) → ( ∫1 ‘ 𝑓 ) ≤ 𝑆 ) |
| 83 | 82 | expr | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐺 ) ) → ( ¬ ( ∫1 ‘ 𝑓 ) ≤ 𝑆 → ( ∫1 ‘ 𝑓 ) ≤ 𝑆 ) ) |
| 84 | 83 | pm2.18d | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐺 ) ) → ( ∫1 ‘ 𝑓 ) ≤ 𝑆 ) |
| 85 | 84 | expr | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) → ( 𝑓 ∘r ≤ 𝐺 → ( ∫1 ‘ 𝑓 ) ≤ 𝑆 ) ) |
| 86 | 85 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐺 → ( ∫1 ‘ 𝑓 ) ≤ 𝑆 ) ) |
| 87 | itg2leub | ⊢ ( ( 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑆 ∈ ℝ* ) → ( ( ∫2 ‘ 𝐺 ) ≤ 𝑆 ↔ ∀ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐺 → ( ∫1 ‘ 𝑓 ) ≤ 𝑆 ) ) ) | |
| 88 | 62 74 87 | syl2anc | ⊢ ( 𝜑 → ( ( ∫2 ‘ 𝐺 ) ≤ 𝑆 ↔ ∀ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐺 → ( ∫1 ‘ 𝑓 ) ≤ 𝑆 ) ) ) |
| 89 | 86 88 | mpbird | ⊢ ( 𝜑 → ( ∫2 ‘ 𝐺 ) ≤ 𝑆 ) |
| 90 | 26 | feq1d | ⊢ ( 𝑛 = 𝑚 → ( ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,) +∞ ) ↔ ( 𝐹 ‘ 𝑚 ) : ℝ ⟶ ( 0 [,) +∞ ) ) ) |
| 91 | 90 | cbvralvw | ⊢ ( ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,) +∞ ) ↔ ∀ 𝑚 ∈ ℕ ( 𝐹 ‘ 𝑚 ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 92 | 43 91 | sylib | ⊢ ( 𝜑 → ∀ 𝑚 ∈ ℕ ( 𝐹 ‘ 𝑚 ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 93 | 92 | r19.21bi | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝐹 ‘ 𝑚 ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 94 | fss | ⊢ ( ( ( 𝐹 ‘ 𝑚 ) : ℝ ⟶ ( 0 [,) +∞ ) ∧ ( 0 [,) +∞ ) ⊆ ( 0 [,] +∞ ) ) → ( 𝐹 ‘ 𝑚 ) : ℝ ⟶ ( 0 [,] +∞ ) ) | |
| 95 | 93 65 94 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝐹 ‘ 𝑚 ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 96 | 62 | adantr | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 97 | 13 21 37 | 3jca | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ⊆ ℝ ∧ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) 𝑧 ≤ 𝑦 ) ) |
| 98 | 97 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ⊆ ℝ ∧ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) 𝑧 ≤ 𝑦 ) ) |
| 99 | 29 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑚 ) = ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) |
| 100 | 22 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) Fn ℕ ) |
| 101 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → 𝑚 ∈ ℕ ) | |
| 102 | fnfvelrn | ⊢ ( ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) Fn ℕ ∧ 𝑚 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑚 ) ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ) | |
| 103 | 100 101 102 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑚 ) ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ) |
| 104 | 99 103 | eqeltrrd | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ) |
| 105 | suprub | ⊢ ( ( ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ⊆ ℝ ∧ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) 𝑧 ≤ 𝑦 ) ∧ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ) → ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ≤ sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) | |
| 106 | 98 104 105 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ≤ sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) |
| 107 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → 𝑥 ∈ ℝ ) | |
| 108 | ltso | ⊢ < Or ℝ | |
| 109 | 108 | supex | ⊢ sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ∈ V |
| 110 | 1 | fvmpt2 | ⊢ ( ( 𝑥 ∈ ℝ ∧ sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ∈ V ) → ( 𝐺 ‘ 𝑥 ) = sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) |
| 111 | 107 109 110 | sylancl | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐺 ‘ 𝑥 ) = sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) |
| 112 | 106 111 | breqtrrd | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ≤ ( 𝐺 ‘ 𝑥 ) ) |
| 113 | 112 | ralrimiva | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ∀ 𝑥 ∈ ℝ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ≤ ( 𝐺 ‘ 𝑥 ) ) |
| 114 | fveq2 | ⊢ ( 𝑥 = 𝑧 → ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) | |
| 115 | fveq2 | ⊢ ( 𝑥 = 𝑧 → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑧 ) ) | |
| 116 | 114 115 | breq12d | ⊢ ( 𝑥 = 𝑧 → ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ≤ ( 𝐺 ‘ 𝑥 ) ↔ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑧 ) ) ) |
| 117 | 116 | cbvralvw | ⊢ ( ∀ 𝑥 ∈ ℝ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ≤ ( 𝐺 ‘ 𝑥 ) ↔ ∀ 𝑧 ∈ ℝ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑧 ) ) |
| 118 | 113 117 | sylib | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ∀ 𝑧 ∈ ℝ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑧 ) ) |
| 119 | 93 | ffnd | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝐹 ‘ 𝑚 ) Fn ℝ ) |
| 120 | 38 1 | fmptd | ⊢ ( 𝜑 → 𝐺 : ℝ ⟶ ℝ ) |
| 121 | 120 | ffnd | ⊢ ( 𝜑 → 𝐺 Fn ℝ ) |
| 122 | 121 | adantr | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 𝐺 Fn ℝ ) |
| 123 | reex | ⊢ ℝ ∈ V | |
| 124 | 123 | a1i | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ℝ ∈ V ) |
| 125 | inidm | ⊢ ( ℝ ∩ ℝ ) = ℝ | |
| 126 | eqidd | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑧 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) = ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) | |
| 127 | eqidd | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑧 ∈ ℝ ) → ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) | |
| 128 | 119 122 124 124 125 126 127 | ofrfval | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑚 ) ∘r ≤ 𝐺 ↔ ∀ 𝑧 ∈ ℝ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ≤ ( 𝐺 ‘ 𝑧 ) ) ) |
| 129 | 118 128 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝐹 ‘ 𝑚 ) ∘r ≤ 𝐺 ) |
| 130 | itg2le | ⊢ ( ( ( 𝐹 ‘ 𝑚 ) : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝐹 ‘ 𝑚 ) ∘r ≤ 𝐺 ) → ( ∫2 ‘ ( 𝐹 ‘ 𝑚 ) ) ≤ ( ∫2 ‘ 𝐺 ) ) | |
| 131 | 95 96 129 130 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ∫2 ‘ ( 𝐹 ‘ 𝑚 ) ) ≤ ( ∫2 ‘ 𝐺 ) ) |
| 132 | 131 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑚 ∈ ℕ ( ∫2 ‘ ( 𝐹 ‘ 𝑚 ) ) ≤ ( ∫2 ‘ 𝐺 ) ) |
| 133 | 70 | ffnd | ⊢ ( 𝜑 → ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) Fn ℕ ) |
| 134 | breq1 | ⊢ ( 𝑧 = ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑚 ) → ( 𝑧 ≤ ( ∫2 ‘ 𝐺 ) ↔ ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑚 ) ≤ ( ∫2 ‘ 𝐺 ) ) ) | |
| 135 | 134 | ralrn | ⊢ ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) Fn ℕ → ( ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) 𝑧 ≤ ( ∫2 ‘ 𝐺 ) ↔ ∀ 𝑚 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑚 ) ≤ ( ∫2 ‘ 𝐺 ) ) ) |
| 136 | 133 135 | syl | ⊢ ( 𝜑 → ( ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) 𝑧 ≤ ( ∫2 ‘ 𝐺 ) ↔ ∀ 𝑚 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑚 ) ≤ ( ∫2 ‘ 𝐺 ) ) ) |
| 137 | 2fveq3 | ⊢ ( 𝑛 = 𝑚 → ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) = ( ∫2 ‘ ( 𝐹 ‘ 𝑚 ) ) ) | |
| 138 | eqid | ⊢ ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) | |
| 139 | fvex | ⊢ ( ∫2 ‘ ( 𝐹 ‘ 𝑚 ) ) ∈ V | |
| 140 | 137 138 139 | fvmpt | ⊢ ( 𝑚 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑚 ) = ( ∫2 ‘ ( 𝐹 ‘ 𝑚 ) ) ) |
| 141 | 140 | breq1d | ⊢ ( 𝑚 ∈ ℕ → ( ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑚 ) ≤ ( ∫2 ‘ 𝐺 ) ↔ ( ∫2 ‘ ( 𝐹 ‘ 𝑚 ) ) ≤ ( ∫2 ‘ 𝐺 ) ) ) |
| 142 | 141 | ralbiia | ⊢ ( ∀ 𝑚 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑚 ) ≤ ( ∫2 ‘ 𝐺 ) ↔ ∀ 𝑚 ∈ ℕ ( ∫2 ‘ ( 𝐹 ‘ 𝑚 ) ) ≤ ( ∫2 ‘ 𝐺 ) ) |
| 143 | 136 142 | bitrdi | ⊢ ( 𝜑 → ( ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) 𝑧 ≤ ( ∫2 ‘ 𝐺 ) ↔ ∀ 𝑚 ∈ ℕ ( ∫2 ‘ ( 𝐹 ‘ 𝑚 ) ) ≤ ( ∫2 ‘ 𝐺 ) ) ) |
| 144 | 132 143 | mpbird | ⊢ ( 𝜑 → ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) 𝑧 ≤ ( ∫2 ‘ 𝐺 ) ) |
| 145 | supxrleub | ⊢ ( ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ⊆ ℝ* ∧ ( ∫2 ‘ 𝐺 ) ∈ ℝ* ) → ( sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) , ℝ* , < ) ≤ ( ∫2 ‘ 𝐺 ) ↔ ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) 𝑧 ≤ ( ∫2 ‘ 𝐺 ) ) ) | |
| 146 | 71 64 145 | syl2anc | ⊢ ( 𝜑 → ( sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) , ℝ* , < ) ≤ ( ∫2 ‘ 𝐺 ) ↔ ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) 𝑧 ≤ ( ∫2 ‘ 𝐺 ) ) ) |
| 147 | 144 146 | mpbird | ⊢ ( 𝜑 → sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) , ℝ* , < ) ≤ ( ∫2 ‘ 𝐺 ) ) |
| 148 | 6 147 | eqbrtrid | ⊢ ( 𝜑 → 𝑆 ≤ ( ∫2 ‘ 𝐺 ) ) |
| 149 | 64 74 89 148 | xrletrid | ⊢ ( 𝜑 → ( ∫2 ‘ 𝐺 ) = 𝑆 ) |