This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The real and extended real suprema match when the real supremum exists. (Contributed by NM, 18-Oct-2005) (Proof shortened by Mario Carneiro, 7-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | supxrre | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) → sup ( 𝐴 , ℝ* , < ) = sup ( 𝐴 , ℝ , < ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) → 𝐴 ⊆ ℝ ) | |
| 2 | ressxr | ⊢ ℝ ⊆ ℝ* | |
| 3 | 1 2 | sstrdi | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) → 𝐴 ⊆ ℝ* ) |
| 4 | supxrcl | ⊢ ( 𝐴 ⊆ ℝ* → sup ( 𝐴 , ℝ* , < ) ∈ ℝ* ) | |
| 5 | 3 4 | syl | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) → sup ( 𝐴 , ℝ* , < ) ∈ ℝ* ) |
| 6 | suprcl | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) → sup ( 𝐴 , ℝ , < ) ∈ ℝ ) | |
| 7 | 6 | rexrd | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) → sup ( 𝐴 , ℝ , < ) ∈ ℝ* ) |
| 8 | 6 | leidd | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) → sup ( 𝐴 , ℝ , < ) ≤ sup ( 𝐴 , ℝ , < ) ) |
| 9 | suprleub | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ∧ sup ( 𝐴 , ℝ , < ) ∈ ℝ ) → ( sup ( 𝐴 , ℝ , < ) ≤ sup ( 𝐴 , ℝ , < ) ↔ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ sup ( 𝐴 , ℝ , < ) ) ) | |
| 10 | 6 9 | mpdan | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) → ( sup ( 𝐴 , ℝ , < ) ≤ sup ( 𝐴 , ℝ , < ) ↔ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ sup ( 𝐴 , ℝ , < ) ) ) |
| 11 | supxrleub | ⊢ ( ( 𝐴 ⊆ ℝ* ∧ sup ( 𝐴 , ℝ , < ) ∈ ℝ* ) → ( sup ( 𝐴 , ℝ* , < ) ≤ sup ( 𝐴 , ℝ , < ) ↔ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ sup ( 𝐴 , ℝ , < ) ) ) | |
| 12 | 3 7 11 | syl2anc | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) → ( sup ( 𝐴 , ℝ* , < ) ≤ sup ( 𝐴 , ℝ , < ) ↔ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ sup ( 𝐴 , ℝ , < ) ) ) |
| 13 | 10 12 | bitr4d | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) → ( sup ( 𝐴 , ℝ , < ) ≤ sup ( 𝐴 , ℝ , < ) ↔ sup ( 𝐴 , ℝ* , < ) ≤ sup ( 𝐴 , ℝ , < ) ) ) |
| 14 | 8 13 | mpbid | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) → sup ( 𝐴 , ℝ* , < ) ≤ sup ( 𝐴 , ℝ , < ) ) |
| 15 | 5 | xrleidd | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) → sup ( 𝐴 , ℝ* , < ) ≤ sup ( 𝐴 , ℝ* , < ) ) |
| 16 | supxrleub | ⊢ ( ( 𝐴 ⊆ ℝ* ∧ sup ( 𝐴 , ℝ* , < ) ∈ ℝ* ) → ( sup ( 𝐴 , ℝ* , < ) ≤ sup ( 𝐴 , ℝ* , < ) ↔ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ sup ( 𝐴 , ℝ* , < ) ) ) | |
| 17 | 3 5 16 | syl2anc | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) → ( sup ( 𝐴 , ℝ* , < ) ≤ sup ( 𝐴 , ℝ* , < ) ↔ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ sup ( 𝐴 , ℝ* , < ) ) ) |
| 18 | simp2 | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) → 𝐴 ≠ ∅ ) | |
| 19 | n0 | ⊢ ( 𝐴 ≠ ∅ ↔ ∃ 𝑧 𝑧 ∈ 𝐴 ) | |
| 20 | 18 19 | sylib | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) → ∃ 𝑧 𝑧 ∈ 𝐴 ) |
| 21 | mnfxr | ⊢ -∞ ∈ ℝ* | |
| 22 | 21 | a1i | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ∧ 𝑧 ∈ 𝐴 ) → -∞ ∈ ℝ* ) |
| 23 | 1 | sselda | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ∧ 𝑧 ∈ 𝐴 ) → 𝑧 ∈ ℝ ) |
| 24 | 23 | rexrd | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ∧ 𝑧 ∈ 𝐴 ) → 𝑧 ∈ ℝ* ) |
| 25 | 5 | adantr | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ∧ 𝑧 ∈ 𝐴 ) → sup ( 𝐴 , ℝ* , < ) ∈ ℝ* ) |
| 26 | 23 | mnfltd | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ∧ 𝑧 ∈ 𝐴 ) → -∞ < 𝑧 ) |
| 27 | supxrub | ⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝑧 ∈ 𝐴 ) → 𝑧 ≤ sup ( 𝐴 , ℝ* , < ) ) | |
| 28 | 3 27 | sylan | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ∧ 𝑧 ∈ 𝐴 ) → 𝑧 ≤ sup ( 𝐴 , ℝ* , < ) ) |
| 29 | 22 24 25 26 28 | xrltletrd | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ∧ 𝑧 ∈ 𝐴 ) → -∞ < sup ( 𝐴 , ℝ* , < ) ) |
| 30 | 20 29 | exlimddv | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) → -∞ < sup ( 𝐴 , ℝ* , < ) ) |
| 31 | xrre | ⊢ ( ( ( sup ( 𝐴 , ℝ* , < ) ∈ ℝ* ∧ sup ( 𝐴 , ℝ , < ) ∈ ℝ ) ∧ ( -∞ < sup ( 𝐴 , ℝ* , < ) ∧ sup ( 𝐴 , ℝ* , < ) ≤ sup ( 𝐴 , ℝ , < ) ) ) → sup ( 𝐴 , ℝ* , < ) ∈ ℝ ) | |
| 32 | 5 6 30 14 31 | syl22anc | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) → sup ( 𝐴 , ℝ* , < ) ∈ ℝ ) |
| 33 | suprleub | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ∧ sup ( 𝐴 , ℝ* , < ) ∈ ℝ ) → ( sup ( 𝐴 , ℝ , < ) ≤ sup ( 𝐴 , ℝ* , < ) ↔ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ sup ( 𝐴 , ℝ* , < ) ) ) | |
| 34 | 32 33 | mpdan | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) → ( sup ( 𝐴 , ℝ , < ) ≤ sup ( 𝐴 , ℝ* , < ) ↔ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ sup ( 𝐴 , ℝ* , < ) ) ) |
| 35 | 17 34 | bitr4d | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) → ( sup ( 𝐴 , ℝ* , < ) ≤ sup ( 𝐴 , ℝ* , < ) ↔ sup ( 𝐴 , ℝ , < ) ≤ sup ( 𝐴 , ℝ* , < ) ) ) |
| 36 | 15 35 | mpbid | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) → sup ( 𝐴 , ℝ , < ) ≤ sup ( 𝐴 , ℝ* , < ) ) |
| 37 | 5 7 14 36 | xrletrid | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) → sup ( 𝐴 , ℝ* , < ) = sup ( 𝐴 , ℝ , < ) ) |