This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Comparison of the limits of two sequences. (Contributed by Paul Chapman, 10-Sep-2007) (Revised by Mario Carneiro, 1-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | climadd.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| climadd.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| climadd.4 | ⊢ ( 𝜑 → 𝐹 ⇝ 𝐴 ) | ||
| climle.5 | ⊢ ( 𝜑 → 𝐺 ⇝ 𝐵 ) | ||
| climle.6 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) | ||
| climle.7 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) ∈ ℝ ) | ||
| climle.8 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ≤ ( 𝐺 ‘ 𝑘 ) ) | ||
| Assertion | climle | ⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climadd.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | climadd.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 3 | climadd.4 | ⊢ ( 𝜑 → 𝐹 ⇝ 𝐴 ) | |
| 4 | climle.5 | ⊢ ( 𝜑 → 𝐺 ⇝ 𝐵 ) | |
| 5 | climle.6 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) | |
| 6 | climle.7 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) ∈ ℝ ) | |
| 7 | climle.8 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ≤ ( 𝐺 ‘ 𝑘 ) ) | |
| 8 | 1 | fvexi | ⊢ 𝑍 ∈ V |
| 9 | 8 | mptex | ⊢ ( 𝑗 ∈ 𝑍 ↦ ( ( 𝐺 ‘ 𝑗 ) − ( 𝐹 ‘ 𝑗 ) ) ) ∈ V |
| 10 | 9 | a1i | ⊢ ( 𝜑 → ( 𝑗 ∈ 𝑍 ↦ ( ( 𝐺 ‘ 𝑗 ) − ( 𝐹 ‘ 𝑗 ) ) ) ∈ V ) |
| 11 | 6 | recnd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) ∈ ℂ ) |
| 12 | 5 | recnd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 13 | fveq2 | ⊢ ( 𝑗 = 𝑘 → ( 𝐺 ‘ 𝑗 ) = ( 𝐺 ‘ 𝑘 ) ) | |
| 14 | fveq2 | ⊢ ( 𝑗 = 𝑘 → ( 𝐹 ‘ 𝑗 ) = ( 𝐹 ‘ 𝑘 ) ) | |
| 15 | 13 14 | oveq12d | ⊢ ( 𝑗 = 𝑘 → ( ( 𝐺 ‘ 𝑗 ) − ( 𝐹 ‘ 𝑗 ) ) = ( ( 𝐺 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑘 ) ) ) |
| 16 | eqid | ⊢ ( 𝑗 ∈ 𝑍 ↦ ( ( 𝐺 ‘ 𝑗 ) − ( 𝐹 ‘ 𝑗 ) ) ) = ( 𝑗 ∈ 𝑍 ↦ ( ( 𝐺 ‘ 𝑗 ) − ( 𝐹 ‘ 𝑗 ) ) ) | |
| 17 | ovex | ⊢ ( ( 𝐺 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑘 ) ) ∈ V | |
| 18 | 15 16 17 | fvmpt | ⊢ ( 𝑘 ∈ 𝑍 → ( ( 𝑗 ∈ 𝑍 ↦ ( ( 𝐺 ‘ 𝑗 ) − ( 𝐹 ‘ 𝑗 ) ) ) ‘ 𝑘 ) = ( ( 𝐺 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑘 ) ) ) |
| 19 | 18 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑗 ∈ 𝑍 ↦ ( ( 𝐺 ‘ 𝑗 ) − ( 𝐹 ‘ 𝑗 ) ) ) ‘ 𝑘 ) = ( ( 𝐺 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑘 ) ) ) |
| 20 | 1 2 4 10 3 11 12 19 | climsub | ⊢ ( 𝜑 → ( 𝑗 ∈ 𝑍 ↦ ( ( 𝐺 ‘ 𝑗 ) − ( 𝐹 ‘ 𝑗 ) ) ) ⇝ ( 𝐵 − 𝐴 ) ) |
| 21 | 6 5 | resubcld | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝐺 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) |
| 22 | 19 21 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑗 ∈ 𝑍 ↦ ( ( 𝐺 ‘ 𝑗 ) − ( 𝐹 ‘ 𝑗 ) ) ) ‘ 𝑘 ) ∈ ℝ ) |
| 23 | 6 5 | subge0d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 0 ≤ ( ( 𝐺 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑘 ) ) ↔ ( 𝐹 ‘ 𝑘 ) ≤ ( 𝐺 ‘ 𝑘 ) ) ) |
| 24 | 7 23 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 0 ≤ ( ( 𝐺 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑘 ) ) ) |
| 25 | 24 19 | breqtrrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 0 ≤ ( ( 𝑗 ∈ 𝑍 ↦ ( ( 𝐺 ‘ 𝑗 ) − ( 𝐹 ‘ 𝑗 ) ) ) ‘ 𝑘 ) ) |
| 26 | 1 2 20 22 25 | climge0 | ⊢ ( 𝜑 → 0 ≤ ( 𝐵 − 𝐴 ) ) |
| 27 | 1 2 4 6 | climrecl | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 28 | 1 2 3 5 | climrecl | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 29 | 27 28 | subge0d | ⊢ ( 𝜑 → ( 0 ≤ ( 𝐵 − 𝐴 ) ↔ 𝐴 ≤ 𝐵 ) ) |
| 30 | 26 29 | mpbid | ⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |