This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restricted specialization, using implicit substitution. (Contributed by NM, 26-Jul-2006) (Proof shortened by Andrew Salmon, 8-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rspcv.1 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| Assertion | rspccva | ⊢ ( ( ∀ 𝑥 ∈ 𝐵 𝜑 ∧ 𝐴 ∈ 𝐵 ) → 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspcv.1 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | 1 | rspcv | ⊢ ( 𝐴 ∈ 𝐵 → ( ∀ 𝑥 ∈ 𝐵 𝜑 → 𝜓 ) ) |
| 3 | 2 | impcom | ⊢ ( ( ∀ 𝑥 ∈ 𝐵 𝜑 ∧ 𝐴 ∈ 𝐵 ) → 𝜓 ) |