This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A bounded monotonic sequence converges to the supremum of its range. Theorem 12-5.1 of Gleason p. 180. (Contributed by NM, 13-Mar-2005) (Revised by Mario Carneiro, 10-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | climsup.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| climsup.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| climsup.3 | ⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ℝ ) | ||
| climsup.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ≤ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) | ||
| climsup.5 | ⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ 𝑍 ( 𝐹 ‘ 𝑘 ) ≤ 𝑥 ) | ||
| Assertion | climsup | ⊢ ( 𝜑 → 𝐹 ⇝ sup ( ran 𝐹 , ℝ , < ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climsup.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | climsup.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 3 | climsup.3 | ⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ℝ ) | |
| 4 | climsup.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ≤ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) | |
| 5 | climsup.5 | ⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ 𝑍 ( 𝐹 ‘ 𝑘 ) ≤ 𝑥 ) | |
| 6 | 3 | frnd | ⊢ ( 𝜑 → ran 𝐹 ⊆ ℝ ) |
| 7 | 3 | ffnd | ⊢ ( 𝜑 → 𝐹 Fn 𝑍 ) |
| 8 | uzid | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 9 | 2 8 | syl | ⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 10 | 9 1 | eleqtrrdi | ⊢ ( 𝜑 → 𝑀 ∈ 𝑍 ) |
| 11 | fnfvelrn | ⊢ ( ( 𝐹 Fn 𝑍 ∧ 𝑀 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑀 ) ∈ ran 𝐹 ) | |
| 12 | 7 10 11 | syl2anc | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝑀 ) ∈ ran 𝐹 ) |
| 13 | 12 | ne0d | ⊢ ( 𝜑 → ran 𝐹 ≠ ∅ ) |
| 14 | breq1 | ⊢ ( 𝑦 = ( 𝐹 ‘ 𝑘 ) → ( 𝑦 ≤ 𝑥 ↔ ( 𝐹 ‘ 𝑘 ) ≤ 𝑥 ) ) | |
| 15 | 14 | ralrn | ⊢ ( 𝐹 Fn 𝑍 → ( ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ↔ ∀ 𝑘 ∈ 𝑍 ( 𝐹 ‘ 𝑘 ) ≤ 𝑥 ) ) |
| 16 | 15 | rexbidv | ⊢ ( 𝐹 Fn 𝑍 → ( ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ 𝑍 ( 𝐹 ‘ 𝑘 ) ≤ 𝑥 ) ) |
| 17 | 7 16 | syl | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ 𝑍 ( 𝐹 ‘ 𝑘 ) ≤ 𝑥 ) ) |
| 18 | 5 17 | mpbird | ⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) |
| 19 | 6 13 18 | 3jca | ⊢ ( 𝜑 → ( ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ) |
| 20 | suprcl | ⊢ ( ( ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) → sup ( ran 𝐹 , ℝ , < ) ∈ ℝ ) | |
| 21 | 19 20 | syl | ⊢ ( 𝜑 → sup ( ran 𝐹 , ℝ , < ) ∈ ℝ ) |
| 22 | ltsubrp | ⊢ ( ( sup ( ran 𝐹 , ℝ , < ) ∈ ℝ ∧ 𝑦 ∈ ℝ+ ) → ( sup ( ran 𝐹 , ℝ , < ) − 𝑦 ) < sup ( ran 𝐹 , ℝ , < ) ) | |
| 23 | 21 22 | sylan | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ( sup ( ran 𝐹 , ℝ , < ) − 𝑦 ) < sup ( ran 𝐹 , ℝ , < ) ) |
| 24 | 19 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ( ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ) |
| 25 | rpre | ⊢ ( 𝑦 ∈ ℝ+ → 𝑦 ∈ ℝ ) | |
| 26 | resubcl | ⊢ ( ( sup ( ran 𝐹 , ℝ , < ) ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( sup ( ran 𝐹 , ℝ , < ) − 𝑦 ) ∈ ℝ ) | |
| 27 | 21 25 26 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ( sup ( ran 𝐹 , ℝ , < ) − 𝑦 ) ∈ ℝ ) |
| 28 | suprlub | ⊢ ( ( ( ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ ( sup ( ran 𝐹 , ℝ , < ) − 𝑦 ) ∈ ℝ ) → ( ( sup ( ran 𝐹 , ℝ , < ) − 𝑦 ) < sup ( ran 𝐹 , ℝ , < ) ↔ ∃ 𝑘 ∈ ran 𝐹 ( sup ( ran 𝐹 , ℝ , < ) − 𝑦 ) < 𝑘 ) ) | |
| 29 | 24 27 28 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ( ( sup ( ran 𝐹 , ℝ , < ) − 𝑦 ) < sup ( ran 𝐹 , ℝ , < ) ↔ ∃ 𝑘 ∈ ran 𝐹 ( sup ( ran 𝐹 , ℝ , < ) − 𝑦 ) < 𝑘 ) ) |
| 30 | 23 29 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ∃ 𝑘 ∈ ran 𝐹 ( sup ( ran 𝐹 , ℝ , < ) − 𝑦 ) < 𝑘 ) |
| 31 | breq2 | ⊢ ( 𝑘 = ( 𝐹 ‘ 𝑗 ) → ( ( sup ( ran 𝐹 , ℝ , < ) − 𝑦 ) < 𝑘 ↔ ( sup ( ran 𝐹 , ℝ , < ) − 𝑦 ) < ( 𝐹 ‘ 𝑗 ) ) ) | |
| 32 | 31 | rexrn | ⊢ ( 𝐹 Fn 𝑍 → ( ∃ 𝑘 ∈ ran 𝐹 ( sup ( ran 𝐹 , ℝ , < ) − 𝑦 ) < 𝑘 ↔ ∃ 𝑗 ∈ 𝑍 ( sup ( ran 𝐹 , ℝ , < ) − 𝑦 ) < ( 𝐹 ‘ 𝑗 ) ) ) |
| 33 | 7 32 | syl | ⊢ ( 𝜑 → ( ∃ 𝑘 ∈ ran 𝐹 ( sup ( ran 𝐹 , ℝ , < ) − 𝑦 ) < 𝑘 ↔ ∃ 𝑗 ∈ 𝑍 ( sup ( ran 𝐹 , ℝ , < ) − 𝑦 ) < ( 𝐹 ‘ 𝑗 ) ) ) |
| 34 | 33 | biimpa | ⊢ ( ( 𝜑 ∧ ∃ 𝑘 ∈ ran 𝐹 ( sup ( ran 𝐹 , ℝ , < ) − 𝑦 ) < 𝑘 ) → ∃ 𝑗 ∈ 𝑍 ( sup ( ran 𝐹 , ℝ , < ) − 𝑦 ) < ( 𝐹 ‘ 𝑗 ) ) |
| 35 | 30 34 | syldan | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ∃ 𝑗 ∈ 𝑍 ( sup ( ran 𝐹 , ℝ , < ) − 𝑦 ) < ( 𝐹 ‘ 𝑗 ) ) |
| 36 | ffvelcdm | ⊢ ( ( 𝐹 : 𝑍 ⟶ ℝ ∧ 𝑗 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑗 ) ∈ ℝ ) | |
| 37 | 3 36 | sylan | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑗 ) ∈ ℝ ) |
| 38 | 37 | ad2ant2r | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 𝐹 ‘ 𝑗 ) ∈ ℝ ) |
| 39 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → 𝐹 : 𝑍 ⟶ ℝ ) |
| 40 | 1 | uztrn2 | ⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑘 ∈ 𝑍 ) |
| 41 | ffvelcdm | ⊢ ( ( 𝐹 : 𝑍 ⟶ ℝ ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) | |
| 42 | 39 40 41 | syl2an | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 43 | 21 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → sup ( ran 𝐹 , ℝ , < ) ∈ ℝ ) |
| 44 | simprr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) | |
| 45 | fzssuz | ⊢ ( 𝑗 ... 𝑘 ) ⊆ ( ℤ≥ ‘ 𝑗 ) | |
| 46 | uzss | ⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ℤ≥ ‘ 𝑗 ) ⊆ ( ℤ≥ ‘ 𝑀 ) ) | |
| 47 | 46 1 | sseqtrrdi | ⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ℤ≥ ‘ 𝑗 ) ⊆ 𝑍 ) |
| 48 | 47 1 | eleq2s | ⊢ ( 𝑗 ∈ 𝑍 → ( ℤ≥ ‘ 𝑗 ) ⊆ 𝑍 ) |
| 49 | 48 | ad2antrl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ℤ≥ ‘ 𝑗 ) ⊆ 𝑍 ) |
| 50 | 45 49 | sstrid | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 𝑗 ... 𝑘 ) ⊆ 𝑍 ) |
| 51 | ffvelcdm | ⊢ ( ( 𝐹 : 𝑍 ⟶ ℝ ∧ 𝑛 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑛 ) ∈ ℝ ) | |
| 52 | 51 | ralrimiva | ⊢ ( 𝐹 : 𝑍 ⟶ ℝ → ∀ 𝑛 ∈ 𝑍 ( 𝐹 ‘ 𝑛 ) ∈ ℝ ) |
| 53 | 3 52 | syl | ⊢ ( 𝜑 → ∀ 𝑛 ∈ 𝑍 ( 𝐹 ‘ 𝑛 ) ∈ ℝ ) |
| 54 | 53 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ∀ 𝑛 ∈ 𝑍 ( 𝐹 ‘ 𝑛 ) ∈ ℝ ) |
| 55 | ssralv | ⊢ ( ( 𝑗 ... 𝑘 ) ⊆ 𝑍 → ( ∀ 𝑛 ∈ 𝑍 ( 𝐹 ‘ 𝑛 ) ∈ ℝ → ∀ 𝑛 ∈ ( 𝑗 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ∈ ℝ ) ) | |
| 56 | 50 54 55 | sylc | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ∀ 𝑛 ∈ ( 𝑗 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ∈ ℝ ) |
| 57 | 56 | r19.21bi | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑛 ∈ ( 𝑗 ... 𝑘 ) ) → ( 𝐹 ‘ 𝑛 ) ∈ ℝ ) |
| 58 | fzssuz | ⊢ ( 𝑗 ... ( 𝑘 − 1 ) ) ⊆ ( ℤ≥ ‘ 𝑗 ) | |
| 59 | 58 49 | sstrid | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 𝑗 ... ( 𝑘 − 1 ) ) ⊆ 𝑍 ) |
| 60 | 59 | sselda | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑛 ∈ ( 𝑗 ... ( 𝑘 − 1 ) ) ) → 𝑛 ∈ 𝑍 ) |
| 61 | 4 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝑍 ( 𝐹 ‘ 𝑘 ) ≤ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) |
| 62 | 61 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ∀ 𝑘 ∈ 𝑍 ( 𝐹 ‘ 𝑘 ) ≤ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) |
| 63 | fveq2 | ⊢ ( 𝑘 = 𝑛 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑛 ) ) | |
| 64 | fvoveq1 | ⊢ ( 𝑘 = 𝑛 → ( 𝐹 ‘ ( 𝑘 + 1 ) ) = ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) | |
| 65 | 63 64 | breq12d | ⊢ ( 𝑘 = 𝑛 → ( ( 𝐹 ‘ 𝑘 ) ≤ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ↔ ( 𝐹 ‘ 𝑛 ) ≤ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
| 66 | 65 | rspccva | ⊢ ( ( ∀ 𝑘 ∈ 𝑍 ( 𝐹 ‘ 𝑘 ) ≤ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∧ 𝑛 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑛 ) ≤ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) |
| 67 | 62 66 | sylan | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑛 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑛 ) ≤ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) |
| 68 | 60 67 | syldan | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑛 ∈ ( 𝑗 ... ( 𝑘 − 1 ) ) ) → ( 𝐹 ‘ 𝑛 ) ≤ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) |
| 69 | 44 57 68 | monoord | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 𝐹 ‘ 𝑗 ) ≤ ( 𝐹 ‘ 𝑘 ) ) |
| 70 | 38 42 43 69 | lesub2dd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑘 ) ) ≤ ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑗 ) ) ) |
| 71 | 43 42 | resubcld | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) |
| 72 | 43 38 | resubcld | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑗 ) ) ∈ ℝ ) |
| 73 | 25 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 𝑦 ∈ ℝ ) |
| 74 | lelttr | ⊢ ( ( ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ∧ ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑗 ) ) ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑘 ) ) ≤ ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑗 ) ) ∧ ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑗 ) ) < 𝑦 ) → ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑘 ) ) < 𝑦 ) ) | |
| 75 | 71 72 73 74 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑘 ) ) ≤ ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑗 ) ) ∧ ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑗 ) ) < 𝑦 ) → ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑘 ) ) < 𝑦 ) ) |
| 76 | 70 75 | mpand | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑗 ) ) < 𝑦 → ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑘 ) ) < 𝑦 ) ) |
| 77 | ltsub23 | ⊢ ( ( sup ( ran 𝐹 , ℝ , < ) ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ ( 𝐹 ‘ 𝑗 ) ∈ ℝ ) → ( ( sup ( ran 𝐹 , ℝ , < ) − 𝑦 ) < ( 𝐹 ‘ 𝑗 ) ↔ ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑗 ) ) < 𝑦 ) ) | |
| 78 | 43 73 38 77 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( sup ( ran 𝐹 , ℝ , < ) − 𝑦 ) < ( 𝐹 ‘ 𝑗 ) ↔ ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑗 ) ) < 𝑦 ) ) |
| 79 | 19 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ) |
| 80 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → 𝐹 Fn 𝑍 ) |
| 81 | fnfvelrn | ⊢ ( ( 𝐹 Fn 𝑍 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ran 𝐹 ) | |
| 82 | 80 40 81 | syl2an | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ran 𝐹 ) |
| 83 | suprub | ⊢ ( ( ( ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ran 𝐹 ) → ( 𝐹 ‘ 𝑘 ) ≤ sup ( ran 𝐹 , ℝ , < ) ) | |
| 84 | 79 82 83 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 𝐹 ‘ 𝑘 ) ≤ sup ( ran 𝐹 , ℝ , < ) ) |
| 85 | 42 43 84 | abssuble0d | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − sup ( ran 𝐹 , ℝ , < ) ) ) = ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑘 ) ) ) |
| 86 | 85 | breq1d | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − sup ( ran 𝐹 , ℝ , < ) ) ) < 𝑦 ↔ ( sup ( ran 𝐹 , ℝ , < ) − ( 𝐹 ‘ 𝑘 ) ) < 𝑦 ) ) |
| 87 | 76 78 86 | 3imtr4d | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( sup ( ran 𝐹 , ℝ , < ) − 𝑦 ) < ( 𝐹 ‘ 𝑗 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − sup ( ran 𝐹 , ℝ , < ) ) ) < 𝑦 ) ) |
| 88 | 87 | anassrs | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( sup ( ran 𝐹 , ℝ , < ) − 𝑦 ) < ( 𝐹 ‘ 𝑗 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − sup ( ran 𝐹 , ℝ , < ) ) ) < 𝑦 ) ) |
| 89 | 88 | ralrimdva | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) → ( ( sup ( ran 𝐹 , ℝ , < ) − 𝑦 ) < ( 𝐹 ‘ 𝑗 ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − sup ( ran 𝐹 , ℝ , < ) ) ) < 𝑦 ) ) |
| 90 | 89 | reximdva | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ( ∃ 𝑗 ∈ 𝑍 ( sup ( ran 𝐹 , ℝ , < ) − 𝑦 ) < ( 𝐹 ‘ 𝑗 ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − sup ( ran 𝐹 , ℝ , < ) ) ) < 𝑦 ) ) |
| 91 | 35 90 | mpd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − sup ( ran 𝐹 , ℝ , < ) ) ) < 𝑦 ) |
| 92 | 91 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑦 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − sup ( ran 𝐹 , ℝ , < ) ) ) < 𝑦 ) |
| 93 | 1 | fvexi | ⊢ 𝑍 ∈ V |
| 94 | fex | ⊢ ( ( 𝐹 : 𝑍 ⟶ ℝ ∧ 𝑍 ∈ V ) → 𝐹 ∈ V ) | |
| 95 | 3 93 94 | sylancl | ⊢ ( 𝜑 → 𝐹 ∈ V ) |
| 96 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) | |
| 97 | 21 | recnd | ⊢ ( 𝜑 → sup ( ran 𝐹 , ℝ , < ) ∈ ℂ ) |
| 98 | 3 41 | sylan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 99 | 98 | recnd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 100 | 1 2 95 96 97 99 | clim2c | ⊢ ( 𝜑 → ( 𝐹 ⇝ sup ( ran 𝐹 , ℝ , < ) ↔ ∀ 𝑦 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − sup ( ran 𝐹 , ℝ , < ) ) ) < 𝑦 ) ) |
| 101 | 92 100 | mpbird | ⊢ ( 𝜑 → 𝐹 ⇝ sup ( ran 𝐹 , ℝ , < ) ) |