This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The "restriction" of a simple function to a measurable subset is simple. (It's not actually a restriction because it is zero instead of undefined outside A .) (Contributed by Mario Carneiro, 29-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | i1fres.1 | ⊢ 𝐺 = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) | |
| Assertion | i1fres | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) → 𝐺 ∈ dom ∫1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | i1fres.1 | ⊢ 𝐺 = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) | |
| 2 | i1ff | ⊢ ( 𝐹 ∈ dom ∫1 → 𝐹 : ℝ ⟶ ℝ ) | |
| 3 | 2 | adantr | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) → 𝐹 : ℝ ⟶ ℝ ) |
| 4 | 3 | ffnd | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) → 𝐹 Fn ℝ ) |
| 5 | fnfvelrn | ⊢ ( ( 𝐹 Fn ℝ ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) ∈ ran 𝐹 ) | |
| 6 | 4 5 | sylan | ⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) ∈ ran 𝐹 ) |
| 7 | i1f0rn | ⊢ ( 𝐹 ∈ dom ∫1 → 0 ∈ ran 𝐹 ) | |
| 8 | 7 | ad2antrr | ⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) ∧ 𝑥 ∈ ℝ ) → 0 ∈ ran 𝐹 ) |
| 9 | 6 8 | ifcld | ⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) ∧ 𝑥 ∈ ℝ ) → if ( 𝑥 ∈ 𝐴 , ( 𝐹 ‘ 𝑥 ) , 0 ) ∈ ran 𝐹 ) |
| 10 | 9 1 | fmptd | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) → 𝐺 : ℝ ⟶ ran 𝐹 ) |
| 11 | 3 | frnd | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) → ran 𝐹 ⊆ ℝ ) |
| 12 | 10 11 | fssd | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) → 𝐺 : ℝ ⟶ ℝ ) |
| 13 | i1frn | ⊢ ( 𝐹 ∈ dom ∫1 → ran 𝐹 ∈ Fin ) | |
| 14 | 13 | adantr | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) → ran 𝐹 ∈ Fin ) |
| 15 | 10 | frnd | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) → ran 𝐺 ⊆ ran 𝐹 ) |
| 16 | 14 15 | ssfid | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) → ran 𝐺 ∈ Fin ) |
| 17 | eleq1w | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ) | |
| 18 | fveq2 | ⊢ ( 𝑥 = 𝑧 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑧 ) ) | |
| 19 | 17 18 | ifbieq1d | ⊢ ( 𝑥 = 𝑧 → if ( 𝑥 ∈ 𝐴 , ( 𝐹 ‘ 𝑥 ) , 0 ) = if ( 𝑧 ∈ 𝐴 , ( 𝐹 ‘ 𝑧 ) , 0 ) ) |
| 20 | fvex | ⊢ ( 𝐹 ‘ 𝑧 ) ∈ V | |
| 21 | c0ex | ⊢ 0 ∈ V | |
| 22 | 20 21 | ifex | ⊢ if ( 𝑧 ∈ 𝐴 , ( 𝐹 ‘ 𝑧 ) , 0 ) ∈ V |
| 23 | 19 1 22 | fvmpt | ⊢ ( 𝑧 ∈ ℝ → ( 𝐺 ‘ 𝑧 ) = if ( 𝑧 ∈ 𝐴 , ( 𝐹 ‘ 𝑧 ) , 0 ) ) |
| 24 | 23 | adantl | ⊢ ( ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) ∧ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ) ∧ 𝑧 ∈ ℝ ) → ( 𝐺 ‘ 𝑧 ) = if ( 𝑧 ∈ 𝐴 , ( 𝐹 ‘ 𝑧 ) , 0 ) ) |
| 25 | 24 | eqeq1d | ⊢ ( ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) ∧ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ) ∧ 𝑧 ∈ ℝ ) → ( ( 𝐺 ‘ 𝑧 ) = 𝑦 ↔ if ( 𝑧 ∈ 𝐴 , ( 𝐹 ‘ 𝑧 ) , 0 ) = 𝑦 ) ) |
| 26 | eldifsni | ⊢ ( 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) → 𝑦 ≠ 0 ) | |
| 27 | 26 | ad2antlr | ⊢ ( ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) ∧ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ) ∧ 𝑧 ∈ ℝ ) → 𝑦 ≠ 0 ) |
| 28 | 27 | necomd | ⊢ ( ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) ∧ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ) ∧ 𝑧 ∈ ℝ ) → 0 ≠ 𝑦 ) |
| 29 | iffalse | ⊢ ( ¬ 𝑧 ∈ 𝐴 → if ( 𝑧 ∈ 𝐴 , ( 𝐹 ‘ 𝑧 ) , 0 ) = 0 ) | |
| 30 | 29 | neeq1d | ⊢ ( ¬ 𝑧 ∈ 𝐴 → ( if ( 𝑧 ∈ 𝐴 , ( 𝐹 ‘ 𝑧 ) , 0 ) ≠ 𝑦 ↔ 0 ≠ 𝑦 ) ) |
| 31 | 28 30 | syl5ibrcom | ⊢ ( ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) ∧ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ) ∧ 𝑧 ∈ ℝ ) → ( ¬ 𝑧 ∈ 𝐴 → if ( 𝑧 ∈ 𝐴 , ( 𝐹 ‘ 𝑧 ) , 0 ) ≠ 𝑦 ) ) |
| 32 | 31 | necon4bd | ⊢ ( ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) ∧ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ) ∧ 𝑧 ∈ ℝ ) → ( if ( 𝑧 ∈ 𝐴 , ( 𝐹 ‘ 𝑧 ) , 0 ) = 𝑦 → 𝑧 ∈ 𝐴 ) ) |
| 33 | 32 | pm4.71rd | ⊢ ( ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) ∧ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ) ∧ 𝑧 ∈ ℝ ) → ( if ( 𝑧 ∈ 𝐴 , ( 𝐹 ‘ 𝑧 ) , 0 ) = 𝑦 ↔ ( 𝑧 ∈ 𝐴 ∧ if ( 𝑧 ∈ 𝐴 , ( 𝐹 ‘ 𝑧 ) , 0 ) = 𝑦 ) ) ) |
| 34 | 25 33 | bitrd | ⊢ ( ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) ∧ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ) ∧ 𝑧 ∈ ℝ ) → ( ( 𝐺 ‘ 𝑧 ) = 𝑦 ↔ ( 𝑧 ∈ 𝐴 ∧ if ( 𝑧 ∈ 𝐴 , ( 𝐹 ‘ 𝑧 ) , 0 ) = 𝑦 ) ) ) |
| 35 | iftrue | ⊢ ( 𝑧 ∈ 𝐴 → if ( 𝑧 ∈ 𝐴 , ( 𝐹 ‘ 𝑧 ) , 0 ) = ( 𝐹 ‘ 𝑧 ) ) | |
| 36 | 35 | eqeq1d | ⊢ ( 𝑧 ∈ 𝐴 → ( if ( 𝑧 ∈ 𝐴 , ( 𝐹 ‘ 𝑧 ) , 0 ) = 𝑦 ↔ ( 𝐹 ‘ 𝑧 ) = 𝑦 ) ) |
| 37 | 36 | pm5.32i | ⊢ ( ( 𝑧 ∈ 𝐴 ∧ if ( 𝑧 ∈ 𝐴 , ( 𝐹 ‘ 𝑧 ) , 0 ) = 𝑦 ) ↔ ( 𝑧 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑦 ) ) |
| 38 | 34 37 | bitrdi | ⊢ ( ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) ∧ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ) ∧ 𝑧 ∈ ℝ ) → ( ( 𝐺 ‘ 𝑧 ) = 𝑦 ↔ ( 𝑧 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑦 ) ) ) |
| 39 | 38 | pm5.32da | ⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) ∧ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( ( 𝑧 ∈ ℝ ∧ ( 𝐺 ‘ 𝑧 ) = 𝑦 ) ↔ ( 𝑧 ∈ ℝ ∧ ( 𝑧 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑦 ) ) ) ) |
| 40 | an12 | ⊢ ( ( 𝑧 ∈ ℝ ∧ ( 𝑧 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑦 ) ) ↔ ( 𝑧 ∈ 𝐴 ∧ ( 𝑧 ∈ ℝ ∧ ( 𝐹 ‘ 𝑧 ) = 𝑦 ) ) ) | |
| 41 | 39 40 | bitrdi | ⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) ∧ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( ( 𝑧 ∈ ℝ ∧ ( 𝐺 ‘ 𝑧 ) = 𝑦 ) ↔ ( 𝑧 ∈ 𝐴 ∧ ( 𝑧 ∈ ℝ ∧ ( 𝐹 ‘ 𝑧 ) = 𝑦 ) ) ) ) |
| 42 | 10 | ffnd | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) → 𝐺 Fn ℝ ) |
| 43 | 42 | adantr | ⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) ∧ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ) → 𝐺 Fn ℝ ) |
| 44 | fniniseg | ⊢ ( 𝐺 Fn ℝ → ( 𝑧 ∈ ( ◡ 𝐺 “ { 𝑦 } ) ↔ ( 𝑧 ∈ ℝ ∧ ( 𝐺 ‘ 𝑧 ) = 𝑦 ) ) ) | |
| 45 | 43 44 | syl | ⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) ∧ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( 𝑧 ∈ ( ◡ 𝐺 “ { 𝑦 } ) ↔ ( 𝑧 ∈ ℝ ∧ ( 𝐺 ‘ 𝑧 ) = 𝑦 ) ) ) |
| 46 | 4 | adantr | ⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) ∧ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ) → 𝐹 Fn ℝ ) |
| 47 | fniniseg | ⊢ ( 𝐹 Fn ℝ → ( 𝑧 ∈ ( ◡ 𝐹 “ { 𝑦 } ) ↔ ( 𝑧 ∈ ℝ ∧ ( 𝐹 ‘ 𝑧 ) = 𝑦 ) ) ) | |
| 48 | 46 47 | syl | ⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) ∧ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( 𝑧 ∈ ( ◡ 𝐹 “ { 𝑦 } ) ↔ ( 𝑧 ∈ ℝ ∧ ( 𝐹 ‘ 𝑧 ) = 𝑦 ) ) ) |
| 49 | 48 | anbi2d | ⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) ∧ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( ( 𝑧 ∈ 𝐴 ∧ 𝑧 ∈ ( ◡ 𝐹 “ { 𝑦 } ) ) ↔ ( 𝑧 ∈ 𝐴 ∧ ( 𝑧 ∈ ℝ ∧ ( 𝐹 ‘ 𝑧 ) = 𝑦 ) ) ) ) |
| 50 | 41 45 49 | 3bitr4d | ⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) ∧ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( 𝑧 ∈ ( ◡ 𝐺 “ { 𝑦 } ) ↔ ( 𝑧 ∈ 𝐴 ∧ 𝑧 ∈ ( ◡ 𝐹 “ { 𝑦 } ) ) ) ) |
| 51 | elin | ⊢ ( 𝑧 ∈ ( 𝐴 ∩ ( ◡ 𝐹 “ { 𝑦 } ) ) ↔ ( 𝑧 ∈ 𝐴 ∧ 𝑧 ∈ ( ◡ 𝐹 “ { 𝑦 } ) ) ) | |
| 52 | 50 51 | bitr4di | ⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) ∧ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( 𝑧 ∈ ( ◡ 𝐺 “ { 𝑦 } ) ↔ 𝑧 ∈ ( 𝐴 ∩ ( ◡ 𝐹 “ { 𝑦 } ) ) ) ) |
| 53 | 52 | eqrdv | ⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) ∧ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( ◡ 𝐺 “ { 𝑦 } ) = ( 𝐴 ∩ ( ◡ 𝐹 “ { 𝑦 } ) ) ) |
| 54 | simplr | ⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) ∧ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ) → 𝐴 ∈ dom vol ) | |
| 55 | i1fima | ⊢ ( 𝐹 ∈ dom ∫1 → ( ◡ 𝐹 “ { 𝑦 } ) ∈ dom vol ) | |
| 56 | 55 | ad2antrr | ⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) ∧ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( ◡ 𝐹 “ { 𝑦 } ) ∈ dom vol ) |
| 57 | inmbl | ⊢ ( ( 𝐴 ∈ dom vol ∧ ( ◡ 𝐹 “ { 𝑦 } ) ∈ dom vol ) → ( 𝐴 ∩ ( ◡ 𝐹 “ { 𝑦 } ) ) ∈ dom vol ) | |
| 58 | 54 56 57 | syl2anc | ⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) ∧ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( 𝐴 ∩ ( ◡ 𝐹 “ { 𝑦 } ) ) ∈ dom vol ) |
| 59 | 53 58 | eqeltrd | ⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) ∧ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( ◡ 𝐺 “ { 𝑦 } ) ∈ dom vol ) |
| 60 | 53 | fveq2d | ⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) ∧ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( vol ‘ ( ◡ 𝐺 “ { 𝑦 } ) ) = ( vol ‘ ( 𝐴 ∩ ( ◡ 𝐹 “ { 𝑦 } ) ) ) ) |
| 61 | mblvol | ⊢ ( ( 𝐴 ∩ ( ◡ 𝐹 “ { 𝑦 } ) ) ∈ dom vol → ( vol ‘ ( 𝐴 ∩ ( ◡ 𝐹 “ { 𝑦 } ) ) ) = ( vol* ‘ ( 𝐴 ∩ ( ◡ 𝐹 “ { 𝑦 } ) ) ) ) | |
| 62 | 58 61 | syl | ⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) ∧ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( vol ‘ ( 𝐴 ∩ ( ◡ 𝐹 “ { 𝑦 } ) ) ) = ( vol* ‘ ( 𝐴 ∩ ( ◡ 𝐹 “ { 𝑦 } ) ) ) ) |
| 63 | 60 62 | eqtrd | ⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) ∧ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( vol ‘ ( ◡ 𝐺 “ { 𝑦 } ) ) = ( vol* ‘ ( 𝐴 ∩ ( ◡ 𝐹 “ { 𝑦 } ) ) ) ) |
| 64 | inss2 | ⊢ ( 𝐴 ∩ ( ◡ 𝐹 “ { 𝑦 } ) ) ⊆ ( ◡ 𝐹 “ { 𝑦 } ) | |
| 65 | mblss | ⊢ ( ( ◡ 𝐹 “ { 𝑦 } ) ∈ dom vol → ( ◡ 𝐹 “ { 𝑦 } ) ⊆ ℝ ) | |
| 66 | 56 65 | syl | ⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) ∧ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( ◡ 𝐹 “ { 𝑦 } ) ⊆ ℝ ) |
| 67 | mblvol | ⊢ ( ( ◡ 𝐹 “ { 𝑦 } ) ∈ dom vol → ( vol ‘ ( ◡ 𝐹 “ { 𝑦 } ) ) = ( vol* ‘ ( ◡ 𝐹 “ { 𝑦 } ) ) ) | |
| 68 | 56 67 | syl | ⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) ∧ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( vol ‘ ( ◡ 𝐹 “ { 𝑦 } ) ) = ( vol* ‘ ( ◡ 𝐹 “ { 𝑦 } ) ) ) |
| 69 | i1fima2sn | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( vol ‘ ( ◡ 𝐹 “ { 𝑦 } ) ) ∈ ℝ ) | |
| 70 | 69 | adantlr | ⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) ∧ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( vol ‘ ( ◡ 𝐹 “ { 𝑦 } ) ) ∈ ℝ ) |
| 71 | 68 70 | eqeltrrd | ⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) ∧ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( vol* ‘ ( ◡ 𝐹 “ { 𝑦 } ) ) ∈ ℝ ) |
| 72 | ovolsscl | ⊢ ( ( ( 𝐴 ∩ ( ◡ 𝐹 “ { 𝑦 } ) ) ⊆ ( ◡ 𝐹 “ { 𝑦 } ) ∧ ( ◡ 𝐹 “ { 𝑦 } ) ⊆ ℝ ∧ ( vol* ‘ ( ◡ 𝐹 “ { 𝑦 } ) ) ∈ ℝ ) → ( vol* ‘ ( 𝐴 ∩ ( ◡ 𝐹 “ { 𝑦 } ) ) ) ∈ ℝ ) | |
| 73 | 64 66 71 72 | mp3an2i | ⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) ∧ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( vol* ‘ ( 𝐴 ∩ ( ◡ 𝐹 “ { 𝑦 } ) ) ) ∈ ℝ ) |
| 74 | 63 73 | eqeltrd | ⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) ∧ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( vol ‘ ( ◡ 𝐺 “ { 𝑦 } ) ) ∈ ℝ ) |
| 75 | 12 16 59 74 | i1fd | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) → 𝐺 ∈ dom ∫1 ) |