This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Definitional property of a measurable function: the preimage of an open right-unbounded interval is measurable. (Contributed by Mario Carneiro, 17-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mbfima | ⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ ℝ ) → ( ◡ 𝐹 “ ( 𝐵 (,) 𝐶 ) ) ∈ dom vol ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ismbf | ⊢ ( 𝐹 : 𝐴 ⟶ ℝ → ( 𝐹 ∈ MblFn ↔ ∀ 𝑥 ∈ ran (,) ( ◡ 𝐹 “ 𝑥 ) ∈ dom vol ) ) | |
| 2 | 1 | biimpac | ⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ ℝ ) → ∀ 𝑥 ∈ ran (,) ( ◡ 𝐹 “ 𝑥 ) ∈ dom vol ) |
| 3 | ioof | ⊢ (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ | |
| 4 | ffn | ⊢ ( (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ → (,) Fn ( ℝ* × ℝ* ) ) | |
| 5 | 3 4 | ax-mp | ⊢ (,) Fn ( ℝ* × ℝ* ) |
| 6 | fnovrn | ⊢ ( ( (,) Fn ( ℝ* × ℝ* ) ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝐵 (,) 𝐶 ) ∈ ran (,) ) | |
| 7 | 5 6 | mp3an1 | ⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝐵 (,) 𝐶 ) ∈ ran (,) ) |
| 8 | imaeq2 | ⊢ ( 𝑥 = ( 𝐵 (,) 𝐶 ) → ( ◡ 𝐹 “ 𝑥 ) = ( ◡ 𝐹 “ ( 𝐵 (,) 𝐶 ) ) ) | |
| 9 | 8 | eleq1d | ⊢ ( 𝑥 = ( 𝐵 (,) 𝐶 ) → ( ( ◡ 𝐹 “ 𝑥 ) ∈ dom vol ↔ ( ◡ 𝐹 “ ( 𝐵 (,) 𝐶 ) ) ∈ dom vol ) ) |
| 10 | 9 | rspccva | ⊢ ( ( ∀ 𝑥 ∈ ran (,) ( ◡ 𝐹 “ 𝑥 ) ∈ dom vol ∧ ( 𝐵 (,) 𝐶 ) ∈ ran (,) ) → ( ◡ 𝐹 “ ( 𝐵 (,) 𝐶 ) ) ∈ dom vol ) |
| 11 | 2 7 10 | syl2an | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ ℝ ) ∧ ( 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ) → ( ◡ 𝐹 “ ( 𝐵 (,) 𝐶 ) ) ∈ dom vol ) |
| 12 | ndmioo | ⊢ ( ¬ ( 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝐵 (,) 𝐶 ) = ∅ ) | |
| 13 | 12 | imaeq2d | ⊢ ( ¬ ( 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( ◡ 𝐹 “ ( 𝐵 (,) 𝐶 ) ) = ( ◡ 𝐹 “ ∅ ) ) |
| 14 | ima0 | ⊢ ( ◡ 𝐹 “ ∅ ) = ∅ | |
| 15 | 13 14 | eqtrdi | ⊢ ( ¬ ( 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( ◡ 𝐹 “ ( 𝐵 (,) 𝐶 ) ) = ∅ ) |
| 16 | 0mbl | ⊢ ∅ ∈ dom vol | |
| 17 | 15 16 | eqeltrdi | ⊢ ( ¬ ( 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( ◡ 𝐹 “ ( 𝐵 (,) 𝐶 ) ) ∈ dom vol ) |
| 18 | 17 | adantl | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ ℝ ) ∧ ¬ ( 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ) → ( ◡ 𝐹 “ ( 𝐵 (,) 𝐶 ) ) ∈ dom vol ) |
| 19 | 11 18 | pm2.61dan | ⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ ℝ ) → ( ◡ 𝐹 “ ( 𝐵 (,) 𝐶 ) ) ∈ dom vol ) |