This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If one function dominates another, then the integral of the larger is also larger. (Contributed by Mario Carneiro, 28-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | itg2le | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐹 ∘r ≤ 𝐺 ) → ( ∫2 ‘ 𝐹 ) ≤ ( ∫2 ‘ 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reex | ⊢ ℝ ∈ V | |
| 2 | 1 | a1i | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ) ∧ ℎ ∈ dom ∫1 ) → ℝ ∈ V ) |
| 3 | i1ff | ⊢ ( ℎ ∈ dom ∫1 → ℎ : ℝ ⟶ ℝ ) | |
| 4 | 3 | adantl | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ) ∧ ℎ ∈ dom ∫1 ) → ℎ : ℝ ⟶ ℝ ) |
| 5 | ressxr | ⊢ ℝ ⊆ ℝ* | |
| 6 | fss | ⊢ ( ( ℎ : ℝ ⟶ ℝ ∧ ℝ ⊆ ℝ* ) → ℎ : ℝ ⟶ ℝ* ) | |
| 7 | 4 5 6 | sylancl | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ) ∧ ℎ ∈ dom ∫1 ) → ℎ : ℝ ⟶ ℝ* ) |
| 8 | simpll | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ) ∧ ℎ ∈ dom ∫1 ) → 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ) | |
| 9 | iccssxr | ⊢ ( 0 [,] +∞ ) ⊆ ℝ* | |
| 10 | fss | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 0 [,] +∞ ) ⊆ ℝ* ) → 𝐹 : ℝ ⟶ ℝ* ) | |
| 11 | 8 9 10 | sylancl | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ) ∧ ℎ ∈ dom ∫1 ) → 𝐹 : ℝ ⟶ ℝ* ) |
| 12 | simplr | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ) ∧ ℎ ∈ dom ∫1 ) → 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ) | |
| 13 | fss | ⊢ ( ( 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 0 [,] +∞ ) ⊆ ℝ* ) → 𝐺 : ℝ ⟶ ℝ* ) | |
| 14 | 12 9 13 | sylancl | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ) ∧ ℎ ∈ dom ∫1 ) → 𝐺 : ℝ ⟶ ℝ* ) |
| 15 | xrletr | ⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ∧ 𝑧 ∈ ℝ* ) → ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧 ) → 𝑥 ≤ 𝑧 ) ) | |
| 16 | 15 | adantl | ⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ) ∧ ℎ ∈ dom ∫1 ) ∧ ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ∧ 𝑧 ∈ ℝ* ) ) → ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧 ) → 𝑥 ≤ 𝑧 ) ) |
| 17 | 2 7 11 14 16 | caoftrn | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ) ∧ ℎ ∈ dom ∫1 ) → ( ( ℎ ∘r ≤ 𝐹 ∧ 𝐹 ∘r ≤ 𝐺 ) → ℎ ∘r ≤ 𝐺 ) ) |
| 18 | simplr | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ) ∧ ( ℎ ∈ dom ∫1 ∧ ℎ ∘r ≤ 𝐺 ) ) → 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ) | |
| 19 | simprl | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ) ∧ ( ℎ ∈ dom ∫1 ∧ ℎ ∘r ≤ 𝐺 ) ) → ℎ ∈ dom ∫1 ) | |
| 20 | simprr | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ) ∧ ( ℎ ∈ dom ∫1 ∧ ℎ ∘r ≤ 𝐺 ) ) → ℎ ∘r ≤ 𝐺 ) | |
| 21 | itg2ub | ⊢ ( ( 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ℎ ∈ dom ∫1 ∧ ℎ ∘r ≤ 𝐺 ) → ( ∫1 ‘ ℎ ) ≤ ( ∫2 ‘ 𝐺 ) ) | |
| 22 | 18 19 20 21 | syl3anc | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ) ∧ ( ℎ ∈ dom ∫1 ∧ ℎ ∘r ≤ 𝐺 ) ) → ( ∫1 ‘ ℎ ) ≤ ( ∫2 ‘ 𝐺 ) ) |
| 23 | 22 | expr | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ) ∧ ℎ ∈ dom ∫1 ) → ( ℎ ∘r ≤ 𝐺 → ( ∫1 ‘ ℎ ) ≤ ( ∫2 ‘ 𝐺 ) ) ) |
| 24 | 17 23 | syld | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ) ∧ ℎ ∈ dom ∫1 ) → ( ( ℎ ∘r ≤ 𝐹 ∧ 𝐹 ∘r ≤ 𝐺 ) → ( ∫1 ‘ ℎ ) ≤ ( ∫2 ‘ 𝐺 ) ) ) |
| 25 | 24 | ancomsd | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ) ∧ ℎ ∈ dom ∫1 ) → ( ( 𝐹 ∘r ≤ 𝐺 ∧ ℎ ∘r ≤ 𝐹 ) → ( ∫1 ‘ ℎ ) ≤ ( ∫2 ‘ 𝐺 ) ) ) |
| 26 | 25 | exp4b | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ) → ( ℎ ∈ dom ∫1 → ( 𝐹 ∘r ≤ 𝐺 → ( ℎ ∘r ≤ 𝐹 → ( ∫1 ‘ ℎ ) ≤ ( ∫2 ‘ 𝐺 ) ) ) ) ) |
| 27 | 26 | com23 | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ) → ( 𝐹 ∘r ≤ 𝐺 → ( ℎ ∈ dom ∫1 → ( ℎ ∘r ≤ 𝐹 → ( ∫1 ‘ ℎ ) ≤ ( ∫2 ‘ 𝐺 ) ) ) ) ) |
| 28 | 27 | 3impia | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐹 ∘r ≤ 𝐺 ) → ( ℎ ∈ dom ∫1 → ( ℎ ∘r ≤ 𝐹 → ( ∫1 ‘ ℎ ) ≤ ( ∫2 ‘ 𝐺 ) ) ) ) |
| 29 | 28 | ralrimiv | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐹 ∘r ≤ 𝐺 ) → ∀ ℎ ∈ dom ∫1 ( ℎ ∘r ≤ 𝐹 → ( ∫1 ‘ ℎ ) ≤ ( ∫2 ‘ 𝐺 ) ) ) |
| 30 | simp1 | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐹 ∘r ≤ 𝐺 ) → 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ) | |
| 31 | itg2cl | ⊢ ( 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) → ( ∫2 ‘ 𝐺 ) ∈ ℝ* ) | |
| 32 | 31 | 3ad2ant2 | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐹 ∘r ≤ 𝐺 ) → ( ∫2 ‘ 𝐺 ) ∈ ℝ* ) |
| 33 | itg2leub | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( ∫2 ‘ 𝐺 ) ∈ ℝ* ) → ( ( ∫2 ‘ 𝐹 ) ≤ ( ∫2 ‘ 𝐺 ) ↔ ∀ ℎ ∈ dom ∫1 ( ℎ ∘r ≤ 𝐹 → ( ∫1 ‘ ℎ ) ≤ ( ∫2 ‘ 𝐺 ) ) ) ) | |
| 34 | 30 32 33 | syl2anc | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐹 ∘r ≤ 𝐺 ) → ( ( ∫2 ‘ 𝐹 ) ≤ ( ∫2 ‘ 𝐺 ) ↔ ∀ ℎ ∈ dom ∫1 ( ℎ ∘r ≤ 𝐹 → ( ∫1 ‘ ℎ ) ≤ ( ∫2 ‘ 𝐺 ) ) ) ) |
| 35 | 29 34 | mpbird | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐹 ∘r ≤ 𝐺 ) → ( ∫2 ‘ 𝐹 ) ≤ ( ∫2 ‘ 𝐺 ) ) |