This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem reex

Description: The real numbers form a set. See also reexALT . (Contributed by Mario Carneiro, 17-Nov-2014)

Ref Expression
Assertion reex ℝ ∈ V

Proof

Step Hyp Ref Expression
1 cnex ℂ ∈ V
2 ax-resscn ℝ ⊆ ℂ
3 1 2 ssexi ℝ ∈ V