This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplication of both sides of 'less than' by a positive number. Theorem I.19 of Apostol p. 20. (Contributed by NM, 13-Feb-2005) (Revised by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ltmul1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( 𝐴 < 𝐵 ↔ ( 𝐴 · 𝐶 ) < ( 𝐵 · 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltmul1a | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) ∧ 𝐴 < 𝐵 ) → ( 𝐴 · 𝐶 ) < ( 𝐵 · 𝐶 ) ) | |
| 2 | 1 | ex | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( 𝐴 < 𝐵 → ( 𝐴 · 𝐶 ) < ( 𝐵 · 𝐶 ) ) ) |
| 3 | oveq1 | ⊢ ( 𝐴 = 𝐵 → ( 𝐴 · 𝐶 ) = ( 𝐵 · 𝐶 ) ) | |
| 4 | 3 | a1i | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( 𝐴 = 𝐵 → ( 𝐴 · 𝐶 ) = ( 𝐵 · 𝐶 ) ) ) |
| 5 | ltmul1a | ⊢ ( ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) ∧ 𝐵 < 𝐴 ) → ( 𝐵 · 𝐶 ) < ( 𝐴 · 𝐶 ) ) | |
| 6 | 5 | ex | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( 𝐵 < 𝐴 → ( 𝐵 · 𝐶 ) < ( 𝐴 · 𝐶 ) ) ) |
| 7 | 6 | 3com12 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( 𝐵 < 𝐴 → ( 𝐵 · 𝐶 ) < ( 𝐴 · 𝐶 ) ) ) |
| 8 | 4 7 | orim12d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( ( 𝐴 = 𝐵 ∨ 𝐵 < 𝐴 ) → ( ( 𝐴 · 𝐶 ) = ( 𝐵 · 𝐶 ) ∨ ( 𝐵 · 𝐶 ) < ( 𝐴 · 𝐶 ) ) ) ) |
| 9 | 8 | con3d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( ¬ ( ( 𝐴 · 𝐶 ) = ( 𝐵 · 𝐶 ) ∨ ( 𝐵 · 𝐶 ) < ( 𝐴 · 𝐶 ) ) → ¬ ( 𝐴 = 𝐵 ∨ 𝐵 < 𝐴 ) ) ) |
| 10 | simp1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → 𝐴 ∈ ℝ ) | |
| 11 | simp3l | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → 𝐶 ∈ ℝ ) | |
| 12 | 10 11 | remulcld | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( 𝐴 · 𝐶 ) ∈ ℝ ) |
| 13 | simp2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → 𝐵 ∈ ℝ ) | |
| 14 | 13 11 | remulcld | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( 𝐵 · 𝐶 ) ∈ ℝ ) |
| 15 | 12 14 | lttrid | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( ( 𝐴 · 𝐶 ) < ( 𝐵 · 𝐶 ) ↔ ¬ ( ( 𝐴 · 𝐶 ) = ( 𝐵 · 𝐶 ) ∨ ( 𝐵 · 𝐶 ) < ( 𝐴 · 𝐶 ) ) ) ) |
| 16 | 10 13 | lttrid | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( 𝐴 < 𝐵 ↔ ¬ ( 𝐴 = 𝐵 ∨ 𝐵 < 𝐴 ) ) ) |
| 17 | 9 15 16 | 3imtr4d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( ( 𝐴 · 𝐶 ) < ( 𝐵 · 𝐶 ) → 𝐴 < 𝐵 ) ) |
| 18 | 2 17 | impbid | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( 𝐴 < 𝐵 ↔ ( 𝐴 · 𝐶 ) < ( 𝐵 · 𝐶 ) ) ) |