This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Limit of a sequence multiplied by a constant C . Corollary 12-2.2 of Gleason p. 171. (Contributed by NM, 24-Sep-2005) (Revised by Mario Carneiro, 3-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | climadd.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| climadd.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| climadd.4 | ⊢ ( 𝜑 → 𝐹 ⇝ 𝐴 ) | ||
| climaddc1.5 | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | ||
| climaddc1.6 | ⊢ ( 𝜑 → 𝐺 ∈ 𝑊 ) | ||
| climaddc1.7 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) | ||
| climmulc2.h | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) = ( 𝐶 · ( 𝐹 ‘ 𝑘 ) ) ) | ||
| Assertion | climmulc2 | ⊢ ( 𝜑 → 𝐺 ⇝ ( 𝐶 · 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climadd.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | climadd.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 3 | climadd.4 | ⊢ ( 𝜑 → 𝐹 ⇝ 𝐴 ) | |
| 4 | climaddc1.5 | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | |
| 5 | climaddc1.6 | ⊢ ( 𝜑 → 𝐺 ∈ 𝑊 ) | |
| 6 | climaddc1.7 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) | |
| 7 | climmulc2.h | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) = ( 𝐶 · ( 𝐹 ‘ 𝑘 ) ) ) | |
| 8 | 0z | ⊢ 0 ∈ ℤ | |
| 9 | uzssz | ⊢ ( ℤ≥ ‘ 0 ) ⊆ ℤ | |
| 10 | zex | ⊢ ℤ ∈ V | |
| 11 | 9 10 | climconst2 | ⊢ ( ( 𝐶 ∈ ℂ ∧ 0 ∈ ℤ ) → ( ℤ × { 𝐶 } ) ⇝ 𝐶 ) |
| 12 | 4 8 11 | sylancl | ⊢ ( 𝜑 → ( ℤ × { 𝐶 } ) ⇝ 𝐶 ) |
| 13 | eluzelz | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑘 ∈ ℤ ) | |
| 14 | 13 1 | eleq2s | ⊢ ( 𝑘 ∈ 𝑍 → 𝑘 ∈ ℤ ) |
| 15 | fvconst2g | ⊢ ( ( 𝐶 ∈ ℂ ∧ 𝑘 ∈ ℤ ) → ( ( ℤ × { 𝐶 } ) ‘ 𝑘 ) = 𝐶 ) | |
| 16 | 4 14 15 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( ℤ × { 𝐶 } ) ‘ 𝑘 ) = 𝐶 ) |
| 17 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐶 ∈ ℂ ) |
| 18 | 16 17 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( ℤ × { 𝐶 } ) ‘ 𝑘 ) ∈ ℂ ) |
| 19 | 16 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( ( ℤ × { 𝐶 } ) ‘ 𝑘 ) · ( 𝐹 ‘ 𝑘 ) ) = ( 𝐶 · ( 𝐹 ‘ 𝑘 ) ) ) |
| 20 | 7 19 | eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) = ( ( ( ℤ × { 𝐶 } ) ‘ 𝑘 ) · ( 𝐹 ‘ 𝑘 ) ) ) |
| 21 | 1 2 12 5 3 18 6 20 | climmul | ⊢ ( 𝜑 → 𝐺 ⇝ ( 𝐶 · 𝐴 ) ) |