This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordering elimination by cases. (Contributed by NM, 1-Jul-2007) (Proof shortened by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ltlecasei.1 | ⊢ ( ( 𝜑 ∧ 𝐴 < 𝐵 ) → 𝜓 ) | |
| ltlecasei.2 | ⊢ ( ( 𝜑 ∧ 𝐵 ≤ 𝐴 ) → 𝜓 ) | ||
| ltlecasei.3 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | ||
| ltlecasei.4 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| Assertion | ltlecasei | ⊢ ( 𝜑 → 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltlecasei.1 | ⊢ ( ( 𝜑 ∧ 𝐴 < 𝐵 ) → 𝜓 ) | |
| 2 | ltlecasei.2 | ⊢ ( ( 𝜑 ∧ 𝐵 ≤ 𝐴 ) → 𝜓 ) | |
| 3 | ltlecasei.3 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 4 | ltlecasei.4 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 5 | lelttric | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 𝐵 ≤ 𝐴 ∨ 𝐴 < 𝐵 ) ) | |
| 6 | 4 3 5 | syl2anc | ⊢ ( 𝜑 → ( 𝐵 ≤ 𝐴 ∨ 𝐴 < 𝐵 ) ) |
| 7 | 2 1 6 | mpjaodan | ⊢ ( 𝜑 → 𝜓 ) |