This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The supremum of a nonempty bounded set of reals is the least upper bound. (Contributed by NM, 15-Nov-2004) (Revised by Mario Carneiro, 6-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | suprlub | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ∧ 𝐵 ∈ ℝ ) → ( 𝐵 < sup ( 𝐴 , ℝ , < ) ↔ ∃ 𝑧 ∈ 𝐴 𝐵 < 𝑧 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltso | ⊢ < Or ℝ | |
| 2 | 1 | a1i | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) → < Or ℝ ) |
| 3 | sup3 | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) → ∃ 𝑥 ∈ ℝ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑦 < 𝑥 → ∃ 𝑤 ∈ 𝐴 𝑦 < 𝑤 ) ) ) | |
| 4 | simp1 | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) → 𝐴 ⊆ ℝ ) | |
| 5 | 2 3 4 | suplub2 | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ∧ 𝐵 ∈ ℝ ) → ( 𝐵 < sup ( 𝐴 , ℝ , < ) ↔ ∃ 𝑤 ∈ 𝐴 𝐵 < 𝑤 ) ) |
| 6 | breq2 | ⊢ ( 𝑤 = 𝑧 → ( 𝐵 < 𝑤 ↔ 𝐵 < 𝑧 ) ) | |
| 7 | 6 | cbvrexvw | ⊢ ( ∃ 𝑤 ∈ 𝐴 𝐵 < 𝑤 ↔ ∃ 𝑧 ∈ 𝐴 𝐵 < 𝑧 ) |
| 8 | 5 7 | bitrdi | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ∧ 𝐵 ∈ ℝ ) → ( 𝐵 < sup ( 𝐴 , ℝ , < ) ↔ ∃ 𝑧 ∈ 𝐴 𝐵 < 𝑧 ) ) |