This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Peano postulate: 1 is a positive integer. (Contributed by NM, 11-Jan-1997) (Revised by Mario Carneiro, 17-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 1nn | ⊢ 1 ∈ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1ex | ⊢ 1 ∈ V | |
| 2 | fr0g | ⊢ ( 1 ∈ V → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) ↾ ω ) ‘ ∅ ) = 1 ) | |
| 3 | 1 2 | ax-mp | ⊢ ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) ↾ ω ) ‘ ∅ ) = 1 |
| 4 | frfnom | ⊢ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) ↾ ω ) Fn ω | |
| 5 | peano1 | ⊢ ∅ ∈ ω | |
| 6 | fnfvelrn | ⊢ ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) ↾ ω ) Fn ω ∧ ∅ ∈ ω ) → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) ↾ ω ) ‘ ∅ ) ∈ ran ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) ↾ ω ) ) | |
| 7 | 4 5 6 | mp2an | ⊢ ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) ↾ ω ) ‘ ∅ ) ∈ ran ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) ↾ ω ) |
| 8 | 3 7 | eqeltrri | ⊢ 1 ∈ ran ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) ↾ ω ) |
| 9 | df-nn | ⊢ ℕ = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) “ ω ) | |
| 10 | df-ima | ⊢ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) “ ω ) = ran ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) ↾ ω ) | |
| 11 | 9 10 | eqtri | ⊢ ℕ = ran ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) ↾ ω ) |
| 12 | 8 11 | eleqtrri | ⊢ 1 ∈ ℕ |