This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The integral of a constant times a simple function is the constant times the original integral. (Contributed by Mario Carneiro, 25-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | i1fmulc.2 | ⊢ ( 𝜑 → 𝐹 ∈ dom ∫1 ) | |
| i1fmulc.3 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | ||
| Assertion | itg1mulc | ⊢ ( 𝜑 → ( ∫1 ‘ ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ) = ( 𝐴 · ( ∫1 ‘ 𝐹 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | i1fmulc.2 | ⊢ ( 𝜑 → 𝐹 ∈ dom ∫1 ) | |
| 2 | i1fmulc.3 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 3 | itg10 | ⊢ ( ∫1 ‘ ( ℝ × { 0 } ) ) = 0 | |
| 4 | reex | ⊢ ℝ ∈ V | |
| 5 | 4 | a1i | ⊢ ( ( 𝜑 ∧ 𝐴 = 0 ) → ℝ ∈ V ) |
| 6 | i1ff | ⊢ ( 𝐹 ∈ dom ∫1 → 𝐹 : ℝ ⟶ ℝ ) | |
| 7 | 1 6 | syl | ⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ℝ ) |
| 8 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 = 0 ) → 𝐹 : ℝ ⟶ ℝ ) |
| 9 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 = 0 ) → 𝐴 ∈ ℝ ) |
| 10 | 0red | ⊢ ( ( 𝜑 ∧ 𝐴 = 0 ) → 0 ∈ ℝ ) | |
| 11 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝐴 = 0 ) ∧ 𝑥 ∈ ℝ ) → 𝐴 = 0 ) | |
| 12 | 11 | oveq1d | ⊢ ( ( ( 𝜑 ∧ 𝐴 = 0 ) ∧ 𝑥 ∈ ℝ ) → ( 𝐴 · 𝑥 ) = ( 0 · 𝑥 ) ) |
| 13 | mul02lem2 | ⊢ ( 𝑥 ∈ ℝ → ( 0 · 𝑥 ) = 0 ) | |
| 14 | 13 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝐴 = 0 ) ∧ 𝑥 ∈ ℝ ) → ( 0 · 𝑥 ) = 0 ) |
| 15 | 12 14 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝐴 = 0 ) ∧ 𝑥 ∈ ℝ ) → ( 𝐴 · 𝑥 ) = 0 ) |
| 16 | 5 8 9 10 15 | caofid2 | ⊢ ( ( 𝜑 ∧ 𝐴 = 0 ) → ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) = ( ℝ × { 0 } ) ) |
| 17 | 16 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝐴 = 0 ) → ( ∫1 ‘ ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ) = ( ∫1 ‘ ( ℝ × { 0 } ) ) ) |
| 18 | simpr | ⊢ ( ( 𝜑 ∧ 𝐴 = 0 ) → 𝐴 = 0 ) | |
| 19 | 18 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝐴 = 0 ) → ( 𝐴 · ( ∫1 ‘ 𝐹 ) ) = ( 0 · ( ∫1 ‘ 𝐹 ) ) ) |
| 20 | itg1cl | ⊢ ( 𝐹 ∈ dom ∫1 → ( ∫1 ‘ 𝐹 ) ∈ ℝ ) | |
| 21 | 1 20 | syl | ⊢ ( 𝜑 → ( ∫1 ‘ 𝐹 ) ∈ ℝ ) |
| 22 | 21 | recnd | ⊢ ( 𝜑 → ( ∫1 ‘ 𝐹 ) ∈ ℂ ) |
| 23 | 22 | mul02d | ⊢ ( 𝜑 → ( 0 · ( ∫1 ‘ 𝐹 ) ) = 0 ) |
| 24 | 23 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 = 0 ) → ( 0 · ( ∫1 ‘ 𝐹 ) ) = 0 ) |
| 25 | 19 24 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝐴 = 0 ) → ( 𝐴 · ( ∫1 ‘ 𝐹 ) ) = 0 ) |
| 26 | 3 17 25 | 3eqtr4a | ⊢ ( ( 𝜑 ∧ 𝐴 = 0 ) → ( ∫1 ‘ ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ) = ( 𝐴 · ( ∫1 ‘ 𝐹 ) ) ) |
| 27 | 1 2 | i1fmulc | ⊢ ( 𝜑 → ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ∈ dom ∫1 ) |
| 28 | 27 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ∈ dom ∫1 ) |
| 29 | i1ff | ⊢ ( ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ∈ dom ∫1 → ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) : ℝ ⟶ ℝ ) | |
| 30 | 28 29 | syl | ⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) : ℝ ⟶ ℝ ) |
| 31 | 30 | frnd | ⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ⊆ ℝ ) |
| 32 | 31 | ssdifssd | ⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ∖ { 0 } ) ⊆ ℝ ) |
| 33 | 32 | sselda | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑚 ∈ ( ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ∖ { 0 } ) ) → 𝑚 ∈ ℝ ) |
| 34 | 33 | recnd | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑚 ∈ ( ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ∖ { 0 } ) ) → 𝑚 ∈ ℂ ) |
| 35 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → 𝐴 ∈ ℝ ) |
| 36 | 35 | recnd | ⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → 𝐴 ∈ ℂ ) |
| 37 | 36 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑚 ∈ ( ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ∖ { 0 } ) ) → 𝐴 ∈ ℂ ) |
| 38 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑚 ∈ ( ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ∖ { 0 } ) ) → 𝐴 ≠ 0 ) | |
| 39 | 34 37 38 | divcan2d | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑚 ∈ ( ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ∖ { 0 } ) ) → ( 𝐴 · ( 𝑚 / 𝐴 ) ) = 𝑚 ) |
| 40 | 1 2 | i1fmulclem | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑚 ∈ ℝ ) → ( ◡ ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) “ { 𝑚 } ) = ( ◡ 𝐹 “ { ( 𝑚 / 𝐴 ) } ) ) |
| 41 | 33 40 | syldan | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑚 ∈ ( ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ∖ { 0 } ) ) → ( ◡ ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) “ { 𝑚 } ) = ( ◡ 𝐹 “ { ( 𝑚 / 𝐴 ) } ) ) |
| 42 | 41 | fveq2d | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑚 ∈ ( ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ∖ { 0 } ) ) → ( vol ‘ ( ◡ ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) “ { 𝑚 } ) ) = ( vol ‘ ( ◡ 𝐹 “ { ( 𝑚 / 𝐴 ) } ) ) ) |
| 43 | 42 | eqcomd | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑚 ∈ ( ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ∖ { 0 } ) ) → ( vol ‘ ( ◡ 𝐹 “ { ( 𝑚 / 𝐴 ) } ) ) = ( vol ‘ ( ◡ ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) “ { 𝑚 } ) ) ) |
| 44 | 39 43 | oveq12d | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑚 ∈ ( ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ∖ { 0 } ) ) → ( ( 𝐴 · ( 𝑚 / 𝐴 ) ) · ( vol ‘ ( ◡ 𝐹 “ { ( 𝑚 / 𝐴 ) } ) ) ) = ( 𝑚 · ( vol ‘ ( ◡ ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) “ { 𝑚 } ) ) ) ) |
| 45 | 2 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑚 ∈ ( ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ∖ { 0 } ) ) → 𝐴 ∈ ℝ ) |
| 46 | 33 45 38 | redivcld | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑚 ∈ ( ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ∖ { 0 } ) ) → ( 𝑚 / 𝐴 ) ∈ ℝ ) |
| 47 | 46 | recnd | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑚 ∈ ( ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ∖ { 0 } ) ) → ( 𝑚 / 𝐴 ) ∈ ℂ ) |
| 48 | 1 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑚 ∈ ( ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ∖ { 0 } ) ) → 𝐹 ∈ dom ∫1 ) |
| 49 | 45 | recnd | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑚 ∈ ( ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ∖ { 0 } ) ) → 𝐴 ∈ ℂ ) |
| 50 | eldifsni | ⊢ ( 𝑚 ∈ ( ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ∖ { 0 } ) → 𝑚 ≠ 0 ) | |
| 51 | 50 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑚 ∈ ( ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ∖ { 0 } ) ) → 𝑚 ≠ 0 ) |
| 52 | 34 49 51 38 | divne0d | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑚 ∈ ( ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ∖ { 0 } ) ) → ( 𝑚 / 𝐴 ) ≠ 0 ) |
| 53 | eldifsn | ⊢ ( ( 𝑚 / 𝐴 ) ∈ ( ℝ ∖ { 0 } ) ↔ ( ( 𝑚 / 𝐴 ) ∈ ℝ ∧ ( 𝑚 / 𝐴 ) ≠ 0 ) ) | |
| 54 | 46 52 53 | sylanbrc | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑚 ∈ ( ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ∖ { 0 } ) ) → ( 𝑚 / 𝐴 ) ∈ ( ℝ ∖ { 0 } ) ) |
| 55 | i1fima2sn | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ ( 𝑚 / 𝐴 ) ∈ ( ℝ ∖ { 0 } ) ) → ( vol ‘ ( ◡ 𝐹 “ { ( 𝑚 / 𝐴 ) } ) ) ∈ ℝ ) | |
| 56 | 48 54 55 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑚 ∈ ( ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ∖ { 0 } ) ) → ( vol ‘ ( ◡ 𝐹 “ { ( 𝑚 / 𝐴 ) } ) ) ∈ ℝ ) |
| 57 | 56 | recnd | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑚 ∈ ( ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ∖ { 0 } ) ) → ( vol ‘ ( ◡ 𝐹 “ { ( 𝑚 / 𝐴 ) } ) ) ∈ ℂ ) |
| 58 | 37 47 57 | mulassd | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑚 ∈ ( ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ∖ { 0 } ) ) → ( ( 𝐴 · ( 𝑚 / 𝐴 ) ) · ( vol ‘ ( ◡ 𝐹 “ { ( 𝑚 / 𝐴 ) } ) ) ) = ( 𝐴 · ( ( 𝑚 / 𝐴 ) · ( vol ‘ ( ◡ 𝐹 “ { ( 𝑚 / 𝐴 ) } ) ) ) ) ) |
| 59 | 44 58 | eqtr3d | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑚 ∈ ( ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ∖ { 0 } ) ) → ( 𝑚 · ( vol ‘ ( ◡ ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) “ { 𝑚 } ) ) ) = ( 𝐴 · ( ( 𝑚 / 𝐴 ) · ( vol ‘ ( ◡ 𝐹 “ { ( 𝑚 / 𝐴 ) } ) ) ) ) ) |
| 60 | 59 | sumeq2dv | ⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → Σ 𝑚 ∈ ( ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ∖ { 0 } ) ( 𝑚 · ( vol ‘ ( ◡ ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) “ { 𝑚 } ) ) ) = Σ 𝑚 ∈ ( ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ∖ { 0 } ) ( 𝐴 · ( ( 𝑚 / 𝐴 ) · ( vol ‘ ( ◡ 𝐹 “ { ( 𝑚 / 𝐴 ) } ) ) ) ) ) |
| 61 | i1frn | ⊢ ( ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ∈ dom ∫1 → ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ∈ Fin ) | |
| 62 | 28 61 | syl | ⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ∈ Fin ) |
| 63 | difss | ⊢ ( ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ∖ { 0 } ) ⊆ ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) | |
| 64 | ssfi | ⊢ ( ( ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ∈ Fin ∧ ( ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ∖ { 0 } ) ⊆ ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ) → ( ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ∖ { 0 } ) ∈ Fin ) | |
| 65 | 62 63 64 | sylancl | ⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ∖ { 0 } ) ∈ Fin ) |
| 66 | 47 57 | mulcld | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑚 ∈ ( ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ∖ { 0 } ) ) → ( ( 𝑚 / 𝐴 ) · ( vol ‘ ( ◡ 𝐹 “ { ( 𝑚 / 𝐴 ) } ) ) ) ∈ ℂ ) |
| 67 | 65 36 66 | fsummulc2 | ⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( 𝐴 · Σ 𝑚 ∈ ( ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ∖ { 0 } ) ( ( 𝑚 / 𝐴 ) · ( vol ‘ ( ◡ 𝐹 “ { ( 𝑚 / 𝐴 ) } ) ) ) ) = Σ 𝑚 ∈ ( ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ∖ { 0 } ) ( 𝐴 · ( ( 𝑚 / 𝐴 ) · ( vol ‘ ( ◡ 𝐹 “ { ( 𝑚 / 𝐴 ) } ) ) ) ) ) |
| 68 | 60 67 | eqtr4d | ⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → Σ 𝑚 ∈ ( ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ∖ { 0 } ) ( 𝑚 · ( vol ‘ ( ◡ ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) “ { 𝑚 } ) ) ) = ( 𝐴 · Σ 𝑚 ∈ ( ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ∖ { 0 } ) ( ( 𝑚 / 𝐴 ) · ( vol ‘ ( ◡ 𝐹 “ { ( 𝑚 / 𝐴 ) } ) ) ) ) ) |
| 69 | itg1val | ⊢ ( ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ∈ dom ∫1 → ( ∫1 ‘ ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ) = Σ 𝑚 ∈ ( ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ∖ { 0 } ) ( 𝑚 · ( vol ‘ ( ◡ ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) “ { 𝑚 } ) ) ) ) | |
| 70 | 28 69 | syl | ⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( ∫1 ‘ ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ) = Σ 𝑚 ∈ ( ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ∖ { 0 } ) ( 𝑚 · ( vol ‘ ( ◡ ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) “ { 𝑚 } ) ) ) ) |
| 71 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → 𝐹 ∈ dom ∫1 ) |
| 72 | itg1val | ⊢ ( 𝐹 ∈ dom ∫1 → ( ∫1 ‘ 𝐹 ) = Σ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ( 𝑘 · ( vol ‘ ( ◡ 𝐹 “ { 𝑘 } ) ) ) ) | |
| 73 | 71 72 | syl | ⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( ∫1 ‘ 𝐹 ) = Σ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ( 𝑘 · ( vol ‘ ( ◡ 𝐹 “ { 𝑘 } ) ) ) ) |
| 74 | id | ⊢ ( 𝑘 = ( 𝑚 / 𝐴 ) → 𝑘 = ( 𝑚 / 𝐴 ) ) | |
| 75 | sneq | ⊢ ( 𝑘 = ( 𝑚 / 𝐴 ) → { 𝑘 } = { ( 𝑚 / 𝐴 ) } ) | |
| 76 | 75 | imaeq2d | ⊢ ( 𝑘 = ( 𝑚 / 𝐴 ) → ( ◡ 𝐹 “ { 𝑘 } ) = ( ◡ 𝐹 “ { ( 𝑚 / 𝐴 ) } ) ) |
| 77 | 76 | fveq2d | ⊢ ( 𝑘 = ( 𝑚 / 𝐴 ) → ( vol ‘ ( ◡ 𝐹 “ { 𝑘 } ) ) = ( vol ‘ ( ◡ 𝐹 “ { ( 𝑚 / 𝐴 ) } ) ) ) |
| 78 | 74 77 | oveq12d | ⊢ ( 𝑘 = ( 𝑚 / 𝐴 ) → ( 𝑘 · ( vol ‘ ( ◡ 𝐹 “ { 𝑘 } ) ) ) = ( ( 𝑚 / 𝐴 ) · ( vol ‘ ( ◡ 𝐹 “ { ( 𝑚 / 𝐴 ) } ) ) ) ) |
| 79 | eqid | ⊢ ( 𝑛 ∈ ( ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ∖ { 0 } ) ↦ ( 𝑛 / 𝐴 ) ) = ( 𝑛 ∈ ( ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ∖ { 0 } ) ↦ ( 𝑛 / 𝐴 ) ) | |
| 80 | eldifi | ⊢ ( 𝑛 ∈ ( ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ∖ { 0 } ) → 𝑛 ∈ ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ) | |
| 81 | 4 | a1i | ⊢ ( 𝜑 → ℝ ∈ V ) |
| 82 | 7 | ffnd | ⊢ ( 𝜑 → 𝐹 Fn ℝ ) |
| 83 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) | |
| 84 | 81 2 82 83 | ofc1 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ‘ 𝑦 ) = ( 𝐴 · ( 𝐹 ‘ 𝑦 ) ) ) |
| 85 | 84 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑦 ∈ ℝ ) → ( ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ‘ 𝑦 ) = ( 𝐴 · ( 𝐹 ‘ 𝑦 ) ) ) |
| 86 | 85 | oveq1d | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑦 ∈ ℝ ) → ( ( ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ‘ 𝑦 ) / 𝐴 ) = ( ( 𝐴 · ( 𝐹 ‘ 𝑦 ) ) / 𝐴 ) ) |
| 87 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → 𝐹 : ℝ ⟶ ℝ ) |
| 88 | 87 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑦 ∈ ℝ ) → ( 𝐹 ‘ 𝑦 ) ∈ ℝ ) |
| 89 | 88 | recnd | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑦 ∈ ℝ ) → ( 𝐹 ‘ 𝑦 ) ∈ ℂ ) |
| 90 | 36 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑦 ∈ ℝ ) → 𝐴 ∈ ℂ ) |
| 91 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑦 ∈ ℝ ) → 𝐴 ≠ 0 ) | |
| 92 | 89 90 91 | divcan3d | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑦 ∈ ℝ ) → ( ( 𝐴 · ( 𝐹 ‘ 𝑦 ) ) / 𝐴 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 93 | 86 92 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑦 ∈ ℝ ) → ( ( ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ‘ 𝑦 ) / 𝐴 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 94 | 87 | ffnd | ⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → 𝐹 Fn ℝ ) |
| 95 | fnfvelrn | ⊢ ( ( 𝐹 Fn ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝐹 ‘ 𝑦 ) ∈ ran 𝐹 ) | |
| 96 | 94 95 | sylan | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑦 ∈ ℝ ) → ( 𝐹 ‘ 𝑦 ) ∈ ran 𝐹 ) |
| 97 | 93 96 | eqeltrd | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑦 ∈ ℝ ) → ( ( ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ‘ 𝑦 ) / 𝐴 ) ∈ ran 𝐹 ) |
| 98 | 97 | ralrimiva | ⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ∀ 𝑦 ∈ ℝ ( ( ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ‘ 𝑦 ) / 𝐴 ) ∈ ran 𝐹 ) |
| 99 | 30 | ffnd | ⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) Fn ℝ ) |
| 100 | oveq1 | ⊢ ( 𝑛 = ( ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ‘ 𝑦 ) → ( 𝑛 / 𝐴 ) = ( ( ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ‘ 𝑦 ) / 𝐴 ) ) | |
| 101 | 100 | eleq1d | ⊢ ( 𝑛 = ( ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ‘ 𝑦 ) → ( ( 𝑛 / 𝐴 ) ∈ ran 𝐹 ↔ ( ( ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ‘ 𝑦 ) / 𝐴 ) ∈ ran 𝐹 ) ) |
| 102 | 101 | ralrn | ⊢ ( ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) Fn ℝ → ( ∀ 𝑛 ∈ ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ( 𝑛 / 𝐴 ) ∈ ran 𝐹 ↔ ∀ 𝑦 ∈ ℝ ( ( ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ‘ 𝑦 ) / 𝐴 ) ∈ ran 𝐹 ) ) |
| 103 | 99 102 | syl | ⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( ∀ 𝑛 ∈ ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ( 𝑛 / 𝐴 ) ∈ ran 𝐹 ↔ ∀ 𝑦 ∈ ℝ ( ( ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ‘ 𝑦 ) / 𝐴 ) ∈ ran 𝐹 ) ) |
| 104 | 98 103 | mpbird | ⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ∀ 𝑛 ∈ ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ( 𝑛 / 𝐴 ) ∈ ran 𝐹 ) |
| 105 | 104 | r19.21bi | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑛 ∈ ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ) → ( 𝑛 / 𝐴 ) ∈ ran 𝐹 ) |
| 106 | 80 105 | sylan2 | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑛 ∈ ( ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ∖ { 0 } ) ) → ( 𝑛 / 𝐴 ) ∈ ran 𝐹 ) |
| 107 | 32 | sselda | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑛 ∈ ( ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ∖ { 0 } ) ) → 𝑛 ∈ ℝ ) |
| 108 | 107 | recnd | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑛 ∈ ( ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ∖ { 0 } ) ) → 𝑛 ∈ ℂ ) |
| 109 | 36 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑛 ∈ ( ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ∖ { 0 } ) ) → 𝐴 ∈ ℂ ) |
| 110 | eldifsni | ⊢ ( 𝑛 ∈ ( ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ∖ { 0 } ) → 𝑛 ≠ 0 ) | |
| 111 | 110 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑛 ∈ ( ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ∖ { 0 } ) ) → 𝑛 ≠ 0 ) |
| 112 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑛 ∈ ( ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ∖ { 0 } ) ) → 𝐴 ≠ 0 ) | |
| 113 | 108 109 111 112 | divne0d | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑛 ∈ ( ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ∖ { 0 } ) ) → ( 𝑛 / 𝐴 ) ≠ 0 ) |
| 114 | eldifsn | ⊢ ( ( 𝑛 / 𝐴 ) ∈ ( ran 𝐹 ∖ { 0 } ) ↔ ( ( 𝑛 / 𝐴 ) ∈ ran 𝐹 ∧ ( 𝑛 / 𝐴 ) ≠ 0 ) ) | |
| 115 | 106 113 114 | sylanbrc | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑛 ∈ ( ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ∖ { 0 } ) ) → ( 𝑛 / 𝐴 ) ∈ ( ran 𝐹 ∖ { 0 } ) ) |
| 116 | eldifi | ⊢ ( 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) → 𝑘 ∈ ran 𝐹 ) | |
| 117 | fnfvelrn | ⊢ ( ( ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) Fn ℝ ∧ 𝑦 ∈ ℝ ) → ( ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ‘ 𝑦 ) ∈ ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ) | |
| 118 | 99 117 | sylan | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑦 ∈ ℝ ) → ( ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ‘ 𝑦 ) ∈ ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ) |
| 119 | 85 118 | eqeltrrd | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑦 ∈ ℝ ) → ( 𝐴 · ( 𝐹 ‘ 𝑦 ) ) ∈ ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ) |
| 120 | 119 | ralrimiva | ⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ∀ 𝑦 ∈ ℝ ( 𝐴 · ( 𝐹 ‘ 𝑦 ) ) ∈ ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ) |
| 121 | oveq2 | ⊢ ( 𝑘 = ( 𝐹 ‘ 𝑦 ) → ( 𝐴 · 𝑘 ) = ( 𝐴 · ( 𝐹 ‘ 𝑦 ) ) ) | |
| 122 | 121 | eleq1d | ⊢ ( 𝑘 = ( 𝐹 ‘ 𝑦 ) → ( ( 𝐴 · 𝑘 ) ∈ ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ↔ ( 𝐴 · ( 𝐹 ‘ 𝑦 ) ) ∈ ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ) ) |
| 123 | 122 | ralrn | ⊢ ( 𝐹 Fn ℝ → ( ∀ 𝑘 ∈ ran 𝐹 ( 𝐴 · 𝑘 ) ∈ ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ↔ ∀ 𝑦 ∈ ℝ ( 𝐴 · ( 𝐹 ‘ 𝑦 ) ) ∈ ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ) ) |
| 124 | 94 123 | syl | ⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( ∀ 𝑘 ∈ ran 𝐹 ( 𝐴 · 𝑘 ) ∈ ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ↔ ∀ 𝑦 ∈ ℝ ( 𝐴 · ( 𝐹 ‘ 𝑦 ) ) ∈ ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ) ) |
| 125 | 120 124 | mpbird | ⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ∀ 𝑘 ∈ ran 𝐹 ( 𝐴 · 𝑘 ) ∈ ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ) |
| 126 | 125 | r19.21bi | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑘 ∈ ran 𝐹 ) → ( 𝐴 · 𝑘 ) ∈ ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ) |
| 127 | 116 126 | sylan2 | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ( 𝐴 · 𝑘 ) ∈ ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ) |
| 128 | 36 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) → 𝐴 ∈ ℂ ) |
| 129 | 87 | frnd | ⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ran 𝐹 ⊆ ℝ ) |
| 130 | 129 | ssdifssd | ⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( ran 𝐹 ∖ { 0 } ) ⊆ ℝ ) |
| 131 | 130 | sselda | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) → 𝑘 ∈ ℝ ) |
| 132 | 131 | recnd | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) → 𝑘 ∈ ℂ ) |
| 133 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) → 𝐴 ≠ 0 ) | |
| 134 | eldifsni | ⊢ ( 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) → 𝑘 ≠ 0 ) | |
| 135 | 134 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) → 𝑘 ≠ 0 ) |
| 136 | 128 132 133 135 | mulne0d | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ( 𝐴 · 𝑘 ) ≠ 0 ) |
| 137 | eldifsn | ⊢ ( ( 𝐴 · 𝑘 ) ∈ ( ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ∖ { 0 } ) ↔ ( ( 𝐴 · 𝑘 ) ∈ ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ∧ ( 𝐴 · 𝑘 ) ≠ 0 ) ) | |
| 138 | 127 136 137 | sylanbrc | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ( 𝐴 · 𝑘 ) ∈ ( ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ∖ { 0 } ) ) |
| 139 | simpl | ⊢ ( ( 𝑛 ∈ ( ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ∖ { 0 } ) ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) → 𝑛 ∈ ( ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ∖ { 0 } ) ) | |
| 140 | ssel2 | ⊢ ( ( ( ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ∖ { 0 } ) ⊆ ℝ ∧ 𝑛 ∈ ( ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ∖ { 0 } ) ) → 𝑛 ∈ ℝ ) | |
| 141 | 32 139 140 | syl2an | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ ( 𝑛 ∈ ( ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ∖ { 0 } ) ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ) → 𝑛 ∈ ℝ ) |
| 142 | 141 | recnd | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ ( 𝑛 ∈ ( ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ∖ { 0 } ) ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ) → 𝑛 ∈ ℂ ) |
| 143 | 2 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ ( 𝑛 ∈ ( ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ∖ { 0 } ) ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ) → 𝐴 ∈ ℝ ) |
| 144 | 143 | recnd | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ ( 𝑛 ∈ ( ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ∖ { 0 } ) ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ) → 𝐴 ∈ ℂ ) |
| 145 | 131 | adantrl | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ ( 𝑛 ∈ ( ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ∖ { 0 } ) ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ) → 𝑘 ∈ ℝ ) |
| 146 | 145 | recnd | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ ( 𝑛 ∈ ( ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ∖ { 0 } ) ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ) → 𝑘 ∈ ℂ ) |
| 147 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ ( 𝑛 ∈ ( ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ∖ { 0 } ) ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ) → 𝐴 ≠ 0 ) | |
| 148 | 142 144 146 147 | divmuld | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ ( 𝑛 ∈ ( ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ∖ { 0 } ) ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ) → ( ( 𝑛 / 𝐴 ) = 𝑘 ↔ ( 𝐴 · 𝑘 ) = 𝑛 ) ) |
| 149 | 148 | bicomd | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ ( 𝑛 ∈ ( ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ∖ { 0 } ) ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ) → ( ( 𝐴 · 𝑘 ) = 𝑛 ↔ ( 𝑛 / 𝐴 ) = 𝑘 ) ) |
| 150 | eqcom | ⊢ ( 𝑛 = ( 𝐴 · 𝑘 ) ↔ ( 𝐴 · 𝑘 ) = 𝑛 ) | |
| 151 | eqcom | ⊢ ( 𝑘 = ( 𝑛 / 𝐴 ) ↔ ( 𝑛 / 𝐴 ) = 𝑘 ) | |
| 152 | 149 150 151 | 3bitr4g | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ ( 𝑛 ∈ ( ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ∖ { 0 } ) ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ) → ( 𝑛 = ( 𝐴 · 𝑘 ) ↔ 𝑘 = ( 𝑛 / 𝐴 ) ) ) |
| 153 | 79 115 138 152 | f1o2d | ⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( 𝑛 ∈ ( ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ∖ { 0 } ) ↦ ( 𝑛 / 𝐴 ) ) : ( ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ∖ { 0 } ) –1-1-onto→ ( ran 𝐹 ∖ { 0 } ) ) |
| 154 | oveq1 | ⊢ ( 𝑛 = 𝑚 → ( 𝑛 / 𝐴 ) = ( 𝑚 / 𝐴 ) ) | |
| 155 | ovex | ⊢ ( 𝑚 / 𝐴 ) ∈ V | |
| 156 | 154 79 155 | fvmpt | ⊢ ( 𝑚 ∈ ( ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ∖ { 0 } ) → ( ( 𝑛 ∈ ( ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ∖ { 0 } ) ↦ ( 𝑛 / 𝐴 ) ) ‘ 𝑚 ) = ( 𝑚 / 𝐴 ) ) |
| 157 | 156 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑚 ∈ ( ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ∖ { 0 } ) ) → ( ( 𝑛 ∈ ( ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ∖ { 0 } ) ↦ ( 𝑛 / 𝐴 ) ) ‘ 𝑚 ) = ( 𝑚 / 𝐴 ) ) |
| 158 | i1fima2sn | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ( vol ‘ ( ◡ 𝐹 “ { 𝑘 } ) ) ∈ ℝ ) | |
| 159 | 71 158 | sylan | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ( vol ‘ ( ◡ 𝐹 “ { 𝑘 } ) ) ∈ ℝ ) |
| 160 | 131 159 | remulcld | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ( 𝑘 · ( vol ‘ ( ◡ 𝐹 “ { 𝑘 } ) ) ) ∈ ℝ ) |
| 161 | 160 | recnd | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ( 𝑘 · ( vol ‘ ( ◡ 𝐹 “ { 𝑘 } ) ) ) ∈ ℂ ) |
| 162 | 78 65 153 157 161 | fsumf1o | ⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → Σ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ( 𝑘 · ( vol ‘ ( ◡ 𝐹 “ { 𝑘 } ) ) ) = Σ 𝑚 ∈ ( ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ∖ { 0 } ) ( ( 𝑚 / 𝐴 ) · ( vol ‘ ( ◡ 𝐹 “ { ( 𝑚 / 𝐴 ) } ) ) ) ) |
| 163 | 73 162 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( ∫1 ‘ 𝐹 ) = Σ 𝑚 ∈ ( ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ∖ { 0 } ) ( ( 𝑚 / 𝐴 ) · ( vol ‘ ( ◡ 𝐹 “ { ( 𝑚 / 𝐴 ) } ) ) ) ) |
| 164 | 163 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( 𝐴 · ( ∫1 ‘ 𝐹 ) ) = ( 𝐴 · Σ 𝑚 ∈ ( ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ∖ { 0 } ) ( ( 𝑚 / 𝐴 ) · ( vol ‘ ( ◡ 𝐹 “ { ( 𝑚 / 𝐴 ) } ) ) ) ) ) |
| 165 | 68 70 164 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( ∫1 ‘ ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ) = ( 𝐴 · ( ∫1 ‘ 𝐹 ) ) ) |
| 166 | 26 165 | pm2.61dane | ⊢ ( 𝜑 → ( ∫1 ‘ ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ) = ( 𝐴 · ( ∫1 ‘ 𝐹 ) ) ) |