This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A member of a set of extended reals is less than or equal to the set's supremum. (Contributed by NM, 7-Feb-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | supxrub | ⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ 𝐴 ) → 𝐵 ≤ sup ( 𝐴 , ℝ* , < ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel2 | ⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ 𝐴 ) → 𝐵 ∈ ℝ* ) | |
| 2 | supxrcl | ⊢ ( 𝐴 ⊆ ℝ* → sup ( 𝐴 , ℝ* , < ) ∈ ℝ* ) | |
| 3 | 2 | adantr | ⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ 𝐴 ) → sup ( 𝐴 , ℝ* , < ) ∈ ℝ* ) |
| 4 | xrltso | ⊢ < Or ℝ* | |
| 5 | 4 | a1i | ⊢ ( 𝐴 ⊆ ℝ* → < Or ℝ* ) |
| 6 | xrsupss | ⊢ ( 𝐴 ⊆ ℝ* → ∃ 𝑥 ∈ ℝ* ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) | |
| 7 | 5 6 | supub | ⊢ ( 𝐴 ⊆ ℝ* → ( 𝐵 ∈ 𝐴 → ¬ sup ( 𝐴 , ℝ* , < ) < 𝐵 ) ) |
| 8 | 7 | imp | ⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ 𝐴 ) → ¬ sup ( 𝐴 , ℝ* , < ) < 𝐵 ) |
| 9 | 1 3 8 | xrnltled | ⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ 𝐴 ) → 𝐵 ≤ sup ( 𝐴 , ℝ* , < ) ) |