This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in an unbounded interval of extended reals. (Contributed by Mario Carneiro, 18-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elioomnf | ⊢ ( 𝐴 ∈ ℝ* → ( 𝐵 ∈ ( -∞ (,) 𝐴 ) ↔ ( 𝐵 ∈ ℝ ∧ 𝐵 < 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mnfxr | ⊢ -∞ ∈ ℝ* | |
| 2 | elioo2 | ⊢ ( ( -∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ* ) → ( 𝐵 ∈ ( -∞ (,) 𝐴 ) ↔ ( 𝐵 ∈ ℝ ∧ -∞ < 𝐵 ∧ 𝐵 < 𝐴 ) ) ) | |
| 3 | 1 2 | mpan | ⊢ ( 𝐴 ∈ ℝ* → ( 𝐵 ∈ ( -∞ (,) 𝐴 ) ↔ ( 𝐵 ∈ ℝ ∧ -∞ < 𝐵 ∧ 𝐵 < 𝐴 ) ) ) |
| 4 | an32 | ⊢ ( ( ( 𝐵 ∈ ℝ ∧ -∞ < 𝐵 ) ∧ 𝐵 < 𝐴 ) ↔ ( ( 𝐵 ∈ ℝ ∧ 𝐵 < 𝐴 ) ∧ -∞ < 𝐵 ) ) | |
| 5 | df-3an | ⊢ ( ( 𝐵 ∈ ℝ ∧ -∞ < 𝐵 ∧ 𝐵 < 𝐴 ) ↔ ( ( 𝐵 ∈ ℝ ∧ -∞ < 𝐵 ) ∧ 𝐵 < 𝐴 ) ) | |
| 6 | mnflt | ⊢ ( 𝐵 ∈ ℝ → -∞ < 𝐵 ) | |
| 7 | 6 | adantr | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐵 < 𝐴 ) → -∞ < 𝐵 ) |
| 8 | 7 | pm4.71i | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐵 < 𝐴 ) ↔ ( ( 𝐵 ∈ ℝ ∧ 𝐵 < 𝐴 ) ∧ -∞ < 𝐵 ) ) |
| 9 | 4 5 8 | 3bitr4i | ⊢ ( ( 𝐵 ∈ ℝ ∧ -∞ < 𝐵 ∧ 𝐵 < 𝐴 ) ↔ ( 𝐵 ∈ ℝ ∧ 𝐵 < 𝐴 ) ) |
| 10 | 3 9 | bitrdi | ⊢ ( 𝐴 ∈ ℝ* → ( 𝐵 ∈ ( -∞ (,) 𝐴 ) ↔ ( 𝐵 ∈ ℝ ∧ 𝐵 < 𝐴 ) ) ) |