This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Elementhood in an image set. (Contributed by Mario Carneiro, 14-Jan-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | elabrex.1 | ⊢ 𝐵 ∈ V | |
| Assertion | elabrex | ⊢ ( 𝑥 ∈ 𝐴 → 𝐵 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elabrex.1 | ⊢ 𝐵 ∈ V | |
| 2 | tru | ⊢ ⊤ | |
| 3 | csbeq1a | ⊢ ( 𝑥 = 𝑧 → 𝐵 = ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) | |
| 4 | 3 | equcoms | ⊢ ( 𝑧 = 𝑥 → 𝐵 = ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) |
| 5 | trud | ⊢ ( 𝑧 = 𝑥 → ⊤ ) | |
| 6 | 4 5 | 2thd | ⊢ ( 𝑧 = 𝑥 → ( 𝐵 = ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ↔ ⊤ ) ) |
| 7 | 6 | rspcev | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ ⊤ ) → ∃ 𝑧 ∈ 𝐴 𝐵 = ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) |
| 8 | 2 7 | mpan2 | ⊢ ( 𝑥 ∈ 𝐴 → ∃ 𝑧 ∈ 𝐴 𝐵 = ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) |
| 9 | eqeq1 | ⊢ ( 𝑦 = 𝐵 → ( 𝑦 = ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ↔ 𝐵 = ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) ) | |
| 10 | 9 | rexbidv | ⊢ ( 𝑦 = 𝐵 → ( ∃ 𝑧 ∈ 𝐴 𝑦 = ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ↔ ∃ 𝑧 ∈ 𝐴 𝐵 = ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) ) |
| 11 | 1 10 | elab | ⊢ ( 𝐵 ∈ { 𝑦 ∣ ∃ 𝑧 ∈ 𝐴 𝑦 = ⦋ 𝑧 / 𝑥 ⦌ 𝐵 } ↔ ∃ 𝑧 ∈ 𝐴 𝐵 = ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) |
| 12 | 8 11 | sylibr | ⊢ ( 𝑥 ∈ 𝐴 → 𝐵 ∈ { 𝑦 ∣ ∃ 𝑧 ∈ 𝐴 𝑦 = ⦋ 𝑧 / 𝑥 ⦌ 𝐵 } ) |
| 13 | nfv | ⊢ Ⅎ 𝑧 𝑦 = 𝐵 | |
| 14 | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑧 / 𝑥 ⦌ 𝐵 | |
| 15 | 14 | nfeq2 | ⊢ Ⅎ 𝑥 𝑦 = ⦋ 𝑧 / 𝑥 ⦌ 𝐵 |
| 16 | 3 | eqeq2d | ⊢ ( 𝑥 = 𝑧 → ( 𝑦 = 𝐵 ↔ 𝑦 = ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) ) |
| 17 | 13 15 16 | cbvrexw | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 ↔ ∃ 𝑧 ∈ 𝐴 𝑦 = ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) |
| 18 | 17 | abbii | ⊢ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } = { 𝑦 ∣ ∃ 𝑧 ∈ 𝐴 𝑦 = ⦋ 𝑧 / 𝑥 ⦌ 𝐵 } |
| 19 | 12 18 | eleqtrrdi | ⊢ ( 𝑥 ∈ 𝐴 → 𝐵 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ) |