This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sum of two measurable functions is measurable. (Contributed by Mario Carneiro, 15-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mbfadd.1 | ⊢ ( 𝜑 → 𝐹 ∈ MblFn ) | |
| mbfadd.2 | ⊢ ( 𝜑 → 𝐺 ∈ MblFn ) | ||
| Assertion | mbfadd | ⊢ ( 𝜑 → ( 𝐹 ∘f + 𝐺 ) ∈ MblFn ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mbfadd.1 | ⊢ ( 𝜑 → 𝐹 ∈ MblFn ) | |
| 2 | mbfadd.2 | ⊢ ( 𝜑 → 𝐺 ∈ MblFn ) | |
| 3 | mbff | ⊢ ( 𝐹 ∈ MblFn → 𝐹 : dom 𝐹 ⟶ ℂ ) | |
| 4 | 1 3 | syl | ⊢ ( 𝜑 → 𝐹 : dom 𝐹 ⟶ ℂ ) |
| 5 | 4 | ffnd | ⊢ ( 𝜑 → 𝐹 Fn dom 𝐹 ) |
| 6 | mbff | ⊢ ( 𝐺 ∈ MblFn → 𝐺 : dom 𝐺 ⟶ ℂ ) | |
| 7 | 2 6 | syl | ⊢ ( 𝜑 → 𝐺 : dom 𝐺 ⟶ ℂ ) |
| 8 | 7 | ffnd | ⊢ ( 𝜑 → 𝐺 Fn dom 𝐺 ) |
| 9 | mbfdm | ⊢ ( 𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol ) | |
| 10 | 1 9 | syl | ⊢ ( 𝜑 → dom 𝐹 ∈ dom vol ) |
| 11 | mbfdm | ⊢ ( 𝐺 ∈ MblFn → dom 𝐺 ∈ dom vol ) | |
| 12 | 2 11 | syl | ⊢ ( 𝜑 → dom 𝐺 ∈ dom vol ) |
| 13 | eqid | ⊢ ( dom 𝐹 ∩ dom 𝐺 ) = ( dom 𝐹 ∩ dom 𝐺 ) | |
| 14 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐹 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) | |
| 15 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐺 ) → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) | |
| 16 | 5 8 10 12 13 14 15 | offval | ⊢ ( 𝜑 → ( 𝐹 ∘f + 𝐺 ) = ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 17 | elinel1 | ⊢ ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) → 𝑥 ∈ dom 𝐹 ) | |
| 18 | ffvelcdm | ⊢ ( ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ 𝑥 ∈ dom 𝐹 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) | |
| 19 | 4 17 18 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
| 20 | elinel2 | ⊢ ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) → 𝑥 ∈ dom 𝐺 ) | |
| 21 | ffvelcdm | ⊢ ( ( 𝐺 : dom 𝐺 ⟶ ℂ ∧ 𝑥 ∈ dom 𝐺 ) → ( 𝐺 ‘ 𝑥 ) ∈ ℂ ) | |
| 22 | 7 20 21 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → ( 𝐺 ‘ 𝑥 ) ∈ ℂ ) |
| 23 | 19 22 | readdd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → ( ℜ ‘ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐺 ‘ 𝑥 ) ) ) = ( ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) + ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 24 | 23 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐺 ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) + ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) ) |
| 25 | inmbl | ⊢ ( ( dom 𝐹 ∈ dom vol ∧ dom 𝐺 ∈ dom vol ) → ( dom 𝐹 ∩ dom 𝐺 ) ∈ dom vol ) | |
| 26 | 10 12 25 | syl2anc | ⊢ ( 𝜑 → ( dom 𝐹 ∩ dom 𝐺 ) ∈ dom vol ) |
| 27 | 19 | recld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) ∈ ℝ ) |
| 28 | 22 | recld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) ∈ ℝ ) |
| 29 | eqidd | ⊢ ( 𝜑 → ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) | |
| 30 | eqidd | ⊢ ( 𝜑 → ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) | |
| 31 | 26 27 28 29 30 | offval2 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∘f + ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) + ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) ) |
| 32 | 24 31 | eqtr4d | ⊢ ( 𝜑 → ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐺 ‘ 𝑥 ) ) ) ) = ( ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∘f + ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) ) |
| 33 | inss1 | ⊢ ( dom 𝐹 ∩ dom 𝐺 ) ⊆ dom 𝐹 | |
| 34 | resmpt | ⊢ ( ( dom 𝐹 ∩ dom 𝐺 ) ⊆ dom 𝐹 → ( ( 𝑥 ∈ dom 𝐹 ↦ ( 𝐹 ‘ 𝑥 ) ) ↾ ( dom 𝐹 ∩ dom 𝐺 ) ) = ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( 𝐹 ‘ 𝑥 ) ) ) | |
| 35 | 33 34 | ax-mp | ⊢ ( ( 𝑥 ∈ dom 𝐹 ↦ ( 𝐹 ‘ 𝑥 ) ) ↾ ( dom 𝐹 ∩ dom 𝐺 ) ) = ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( 𝐹 ‘ 𝑥 ) ) |
| 36 | 4 | feqmptd | ⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ dom 𝐹 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 37 | 36 1 | eqeltrrd | ⊢ ( 𝜑 → ( 𝑥 ∈ dom 𝐹 ↦ ( 𝐹 ‘ 𝑥 ) ) ∈ MblFn ) |
| 38 | mbfres | ⊢ ( ( ( 𝑥 ∈ dom 𝐹 ↦ ( 𝐹 ‘ 𝑥 ) ) ∈ MblFn ∧ ( dom 𝐹 ∩ dom 𝐺 ) ∈ dom vol ) → ( ( 𝑥 ∈ dom 𝐹 ↦ ( 𝐹 ‘ 𝑥 ) ) ↾ ( dom 𝐹 ∩ dom 𝐺 ) ) ∈ MblFn ) | |
| 39 | 37 26 38 | syl2anc | ⊢ ( 𝜑 → ( ( 𝑥 ∈ dom 𝐹 ↦ ( 𝐹 ‘ 𝑥 ) ) ↾ ( dom 𝐹 ∩ dom 𝐺 ) ) ∈ MblFn ) |
| 40 | 35 39 | eqeltrrid | ⊢ ( 𝜑 → ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( 𝐹 ‘ 𝑥 ) ) ∈ MblFn ) |
| 41 | 19 | ismbfcn2 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( 𝐹 ‘ 𝑥 ) ) ∈ MblFn ↔ ( ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∈ MblFn ∧ ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∈ MblFn ) ) ) |
| 42 | 40 41 | mpbid | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∈ MblFn ∧ ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∈ MblFn ) ) |
| 43 | 42 | simpld | ⊢ ( 𝜑 → ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∈ MblFn ) |
| 44 | inss2 | ⊢ ( dom 𝐹 ∩ dom 𝐺 ) ⊆ dom 𝐺 | |
| 45 | resmpt | ⊢ ( ( dom 𝐹 ∩ dom 𝐺 ) ⊆ dom 𝐺 → ( ( 𝑥 ∈ dom 𝐺 ↦ ( 𝐺 ‘ 𝑥 ) ) ↾ ( dom 𝐹 ∩ dom 𝐺 ) ) = ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( 𝐺 ‘ 𝑥 ) ) ) | |
| 46 | 44 45 | ax-mp | ⊢ ( ( 𝑥 ∈ dom 𝐺 ↦ ( 𝐺 ‘ 𝑥 ) ) ↾ ( dom 𝐹 ∩ dom 𝐺 ) ) = ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( 𝐺 ‘ 𝑥 ) ) |
| 47 | 7 | feqmptd | ⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ dom 𝐺 ↦ ( 𝐺 ‘ 𝑥 ) ) ) |
| 48 | 47 2 | eqeltrrd | ⊢ ( 𝜑 → ( 𝑥 ∈ dom 𝐺 ↦ ( 𝐺 ‘ 𝑥 ) ) ∈ MblFn ) |
| 49 | mbfres | ⊢ ( ( ( 𝑥 ∈ dom 𝐺 ↦ ( 𝐺 ‘ 𝑥 ) ) ∈ MblFn ∧ ( dom 𝐹 ∩ dom 𝐺 ) ∈ dom vol ) → ( ( 𝑥 ∈ dom 𝐺 ↦ ( 𝐺 ‘ 𝑥 ) ) ↾ ( dom 𝐹 ∩ dom 𝐺 ) ) ∈ MblFn ) | |
| 50 | 48 26 49 | syl2anc | ⊢ ( 𝜑 → ( ( 𝑥 ∈ dom 𝐺 ↦ ( 𝐺 ‘ 𝑥 ) ) ↾ ( dom 𝐹 ∩ dom 𝐺 ) ) ∈ MblFn ) |
| 51 | 46 50 | eqeltrrid | ⊢ ( 𝜑 → ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( 𝐺 ‘ 𝑥 ) ) ∈ MblFn ) |
| 52 | 22 | ismbfcn2 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( 𝐺 ‘ 𝑥 ) ) ∈ MblFn ↔ ( ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ∈ MblFn ∧ ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ∈ MblFn ) ) ) |
| 53 | 51 52 | mpbid | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ∈ MblFn ∧ ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ∈ MblFn ) ) |
| 54 | 53 | simpld | ⊢ ( 𝜑 → ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ∈ MblFn ) |
| 55 | 27 | fmpttd | ⊢ ( 𝜑 → ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) ) : ( dom 𝐹 ∩ dom 𝐺 ) ⟶ ℝ ) |
| 56 | 28 | fmpttd | ⊢ ( 𝜑 → ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) ) : ( dom 𝐹 ∩ dom 𝐺 ) ⟶ ℝ ) |
| 57 | 43 54 55 56 | mbfaddlem | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∘f + ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) ∈ MblFn ) |
| 58 | 32 57 | eqeltrd | ⊢ ( 𝜑 → ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐺 ‘ 𝑥 ) ) ) ) ∈ MblFn ) |
| 59 | 19 22 | imaddd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → ( ℑ ‘ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐺 ‘ 𝑥 ) ) ) = ( ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) + ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 60 | 59 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐺 ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) + ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) ) |
| 61 | 19 | imcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) ∈ ℝ ) |
| 62 | 22 | imcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) ∈ ℝ ) |
| 63 | eqidd | ⊢ ( 𝜑 → ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) | |
| 64 | eqidd | ⊢ ( 𝜑 → ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) | |
| 65 | 26 61 62 63 64 | offval2 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∘f + ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) + ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) ) |
| 66 | 60 65 | eqtr4d | ⊢ ( 𝜑 → ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐺 ‘ 𝑥 ) ) ) ) = ( ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∘f + ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) ) |
| 67 | 42 | simprd | ⊢ ( 𝜑 → ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∈ MblFn ) |
| 68 | 53 | simprd | ⊢ ( 𝜑 → ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ∈ MblFn ) |
| 69 | 61 | fmpttd | ⊢ ( 𝜑 → ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) ) : ( dom 𝐹 ∩ dom 𝐺 ) ⟶ ℝ ) |
| 70 | 62 | fmpttd | ⊢ ( 𝜑 → ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) ) : ( dom 𝐹 ∩ dom 𝐺 ) ⟶ ℝ ) |
| 71 | 67 68 69 70 | mbfaddlem | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∘f + ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) ∈ MblFn ) |
| 72 | 66 71 | eqeltrd | ⊢ ( 𝜑 → ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐺 ‘ 𝑥 ) ) ) ) ∈ MblFn ) |
| 73 | 19 22 | addcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → ( ( 𝐹 ‘ 𝑥 ) + ( 𝐺 ‘ 𝑥 ) ) ∈ ℂ ) |
| 74 | 73 | ismbfcn2 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐺 ‘ 𝑥 ) ) ) ∈ MblFn ↔ ( ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐺 ‘ 𝑥 ) ) ) ) ∈ MblFn ∧ ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐺 ‘ 𝑥 ) ) ) ) ∈ MblFn ) ) ) |
| 75 | 58 72 74 | mpbir2and | ⊢ ( 𝜑 → ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐺 ‘ 𝑥 ) ) ) ∈ MblFn ) |
| 76 | 16 75 | eqeltrd | ⊢ ( 𝜑 → ( 𝐹 ∘f + 𝐺 ) ∈ MblFn ) |