This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The indexed union of a restricted class abstraction. (Contributed by NM, 3-Jan-2004) (Proof shortened by Mario Carneiro, 14-Nov-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iunrab | ⊢ ∪ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } = { 𝑦 ∈ 𝐵 ∣ ∃ 𝑥 ∈ 𝐴 𝜑 } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iunab | ⊢ ∪ 𝑥 ∈ 𝐴 { 𝑦 ∣ ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) } = { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) } | |
| 2 | df-rab | ⊢ { 𝑦 ∈ 𝐵 ∣ 𝜑 } = { 𝑦 ∣ ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) } | |
| 3 | 2 | a1i | ⊢ ( 𝑥 ∈ 𝐴 → { 𝑦 ∈ 𝐵 ∣ 𝜑 } = { 𝑦 ∣ ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) } ) |
| 4 | 3 | iuneq2i | ⊢ ∪ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } = ∪ 𝑥 ∈ 𝐴 { 𝑦 ∣ ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) } |
| 5 | df-rab | ⊢ { 𝑦 ∈ 𝐵 ∣ ∃ 𝑥 ∈ 𝐴 𝜑 } = { 𝑦 ∣ ( 𝑦 ∈ 𝐵 ∧ ∃ 𝑥 ∈ 𝐴 𝜑 ) } | |
| 6 | r19.42v | ⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ↔ ( 𝑦 ∈ 𝐵 ∧ ∃ 𝑥 ∈ 𝐴 𝜑 ) ) | |
| 7 | 6 | abbii | ⊢ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) } = { 𝑦 ∣ ( 𝑦 ∈ 𝐵 ∧ ∃ 𝑥 ∈ 𝐴 𝜑 ) } |
| 8 | 5 7 | eqtr4i | ⊢ { 𝑦 ∈ 𝐵 ∣ ∃ 𝑥 ∈ 𝐴 𝜑 } = { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) } |
| 9 | 1 4 8 | 3eqtr4i | ⊢ ∪ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } = { 𝑦 ∈ 𝐵 ∣ ∃ 𝑥 ∈ 𝐴 𝜑 } |