This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Transitive law. (Contributed by NM, 12-Nov-1999)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | letr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶 ) → 𝐴 ≤ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | leloe | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐵 ≤ 𝐶 ↔ ( 𝐵 < 𝐶 ∨ 𝐵 = 𝐶 ) ) ) | |
| 2 | 1 | 3adant1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐵 ≤ 𝐶 ↔ ( 𝐵 < 𝐶 ∨ 𝐵 = 𝐶 ) ) ) |
| 3 | 2 | adantr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐴 ≤ 𝐵 ) → ( 𝐵 ≤ 𝐶 ↔ ( 𝐵 < 𝐶 ∨ 𝐵 = 𝐶 ) ) ) |
| 4 | lelttr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶 ) → 𝐴 < 𝐶 ) ) | |
| 5 | ltle | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 < 𝐶 → 𝐴 ≤ 𝐶 ) ) | |
| 6 | 5 | 3adant2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 < 𝐶 → 𝐴 ≤ 𝐶 ) ) |
| 7 | 4 6 | syld | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶 ) → 𝐴 ≤ 𝐶 ) ) |
| 8 | 7 | expdimp | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐴 ≤ 𝐵 ) → ( 𝐵 < 𝐶 → 𝐴 ≤ 𝐶 ) ) |
| 9 | breq2 | ⊢ ( 𝐵 = 𝐶 → ( 𝐴 ≤ 𝐵 ↔ 𝐴 ≤ 𝐶 ) ) | |
| 10 | 9 | biimpcd | ⊢ ( 𝐴 ≤ 𝐵 → ( 𝐵 = 𝐶 → 𝐴 ≤ 𝐶 ) ) |
| 11 | 10 | adantl | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐴 ≤ 𝐵 ) → ( 𝐵 = 𝐶 → 𝐴 ≤ 𝐶 ) ) |
| 12 | 8 11 | jaod | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐴 ≤ 𝐵 ) → ( ( 𝐵 < 𝐶 ∨ 𝐵 = 𝐶 ) → 𝐴 ≤ 𝐶 ) ) |
| 13 | 3 12 | sylbid | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐴 ≤ 𝐵 ) → ( 𝐵 ≤ 𝐶 → 𝐴 ≤ 𝐶 ) ) |
| 14 | 13 | expimpd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶 ) → 𝐴 ≤ 𝐶 ) ) |