This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An intersection of measurable sets is measurable. (Contributed by Mario Carneiro, 18-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | inmbl | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) → ( 𝐴 ∩ 𝐵 ) ∈ dom vol ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difundi | ⊢ ( ℝ ∖ ( ( ℝ ∖ 𝐴 ) ∪ ( ℝ ∖ 𝐵 ) ) ) = ( ( ℝ ∖ ( ℝ ∖ 𝐴 ) ) ∩ ( ℝ ∖ ( ℝ ∖ 𝐵 ) ) ) | |
| 2 | mblss | ⊢ ( 𝐴 ∈ dom vol → 𝐴 ⊆ ℝ ) | |
| 3 | dfss4 | ⊢ ( 𝐴 ⊆ ℝ ↔ ( ℝ ∖ ( ℝ ∖ 𝐴 ) ) = 𝐴 ) | |
| 4 | 2 3 | sylib | ⊢ ( 𝐴 ∈ dom vol → ( ℝ ∖ ( ℝ ∖ 𝐴 ) ) = 𝐴 ) |
| 5 | mblss | ⊢ ( 𝐵 ∈ dom vol → 𝐵 ⊆ ℝ ) | |
| 6 | dfss4 | ⊢ ( 𝐵 ⊆ ℝ ↔ ( ℝ ∖ ( ℝ ∖ 𝐵 ) ) = 𝐵 ) | |
| 7 | 5 6 | sylib | ⊢ ( 𝐵 ∈ dom vol → ( ℝ ∖ ( ℝ ∖ 𝐵 ) ) = 𝐵 ) |
| 8 | 4 7 | ineqan12d | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) → ( ( ℝ ∖ ( ℝ ∖ 𝐴 ) ) ∩ ( ℝ ∖ ( ℝ ∖ 𝐵 ) ) ) = ( 𝐴 ∩ 𝐵 ) ) |
| 9 | 1 8 | eqtrid | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) → ( ℝ ∖ ( ( ℝ ∖ 𝐴 ) ∪ ( ℝ ∖ 𝐵 ) ) ) = ( 𝐴 ∩ 𝐵 ) ) |
| 10 | cmmbl | ⊢ ( 𝐴 ∈ dom vol → ( ℝ ∖ 𝐴 ) ∈ dom vol ) | |
| 11 | cmmbl | ⊢ ( 𝐵 ∈ dom vol → ( ℝ ∖ 𝐵 ) ∈ dom vol ) | |
| 12 | unmbl | ⊢ ( ( ( ℝ ∖ 𝐴 ) ∈ dom vol ∧ ( ℝ ∖ 𝐵 ) ∈ dom vol ) → ( ( ℝ ∖ 𝐴 ) ∪ ( ℝ ∖ 𝐵 ) ) ∈ dom vol ) | |
| 13 | 10 11 12 | syl2an | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) → ( ( ℝ ∖ 𝐴 ) ∪ ( ℝ ∖ 𝐵 ) ) ∈ dom vol ) |
| 14 | cmmbl | ⊢ ( ( ( ℝ ∖ 𝐴 ) ∪ ( ℝ ∖ 𝐵 ) ) ∈ dom vol → ( ℝ ∖ ( ( ℝ ∖ 𝐴 ) ∪ ( ℝ ∖ 𝐵 ) ) ) ∈ dom vol ) | |
| 15 | 13 14 | syl | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) → ( ℝ ∖ ( ( ℝ ∖ 𝐴 ) ∪ ( ℝ ∖ 𝐵 ) ) ) ∈ dom vol ) |
| 16 | 9 15 | eqeltrrd | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) → ( 𝐴 ∩ 𝐵 ) ∈ dom vol ) |