This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for itg2mono . We show that for any constant t less than one, t x. S.1 H is less than S , and so S.1 H <_ S , which is one half of the equality in itg2mono . Consider the sequence A ( n ) = { x | t x. H <_ F ( n ) } . This is an increasing sequence of measurable sets whose union is RR , and so ` H |`A ( n ) has an integral which equals S.1 H in the limit, by itg1climres . Then by taking the limit in ` ( t x. H ) |`A ( n ) <_ F ( n ) , we get t x. S.1 H <_ S as desired. (Contributed by Mario Carneiro, 16-Aug-2014) (Revised by Mario Carneiro, 23-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | itg2mono.1 | |- G = ( x e. RR |-> sup ( ran ( n e. NN |-> ( ( F ` n ) ` x ) ) , RR , < ) ) |
|
| itg2mono.2 | |- ( ( ph /\ n e. NN ) -> ( F ` n ) e. MblFn ) |
||
| itg2mono.3 | |- ( ( ph /\ n e. NN ) -> ( F ` n ) : RR --> ( 0 [,) +oo ) ) |
||
| itg2mono.4 | |- ( ( ph /\ n e. NN ) -> ( F ` n ) oR <_ ( F ` ( n + 1 ) ) ) |
||
| itg2mono.5 | |- ( ( ph /\ x e. RR ) -> E. y e. RR A. n e. NN ( ( F ` n ) ` x ) <_ y ) |
||
| itg2mono.6 | |- S = sup ( ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) , RR* , < ) |
||
| itg2mono.7 | |- ( ph -> T e. ( 0 (,) 1 ) ) |
||
| itg2mono.8 | |- ( ph -> H e. dom S.1 ) |
||
| itg2mono.9 | |- ( ph -> H oR <_ G ) |
||
| itg2mono.10 | |- ( ph -> S e. RR ) |
||
| itg2mono.11 | |- A = ( n e. NN |-> { x e. RR | ( T x. ( H ` x ) ) <_ ( ( F ` n ) ` x ) } ) |
||
| Assertion | itg2monolem1 | |- ( ph -> ( T x. ( S.1 ` H ) ) <_ S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itg2mono.1 | |- G = ( x e. RR |-> sup ( ran ( n e. NN |-> ( ( F ` n ) ` x ) ) , RR , < ) ) |
|
| 2 | itg2mono.2 | |- ( ( ph /\ n e. NN ) -> ( F ` n ) e. MblFn ) |
|
| 3 | itg2mono.3 | |- ( ( ph /\ n e. NN ) -> ( F ` n ) : RR --> ( 0 [,) +oo ) ) |
|
| 4 | itg2mono.4 | |- ( ( ph /\ n e. NN ) -> ( F ` n ) oR <_ ( F ` ( n + 1 ) ) ) |
|
| 5 | itg2mono.5 | |- ( ( ph /\ x e. RR ) -> E. y e. RR A. n e. NN ( ( F ` n ) ` x ) <_ y ) |
|
| 6 | itg2mono.6 | |- S = sup ( ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) , RR* , < ) |
|
| 7 | itg2mono.7 | |- ( ph -> T e. ( 0 (,) 1 ) ) |
|
| 8 | itg2mono.8 | |- ( ph -> H e. dom S.1 ) |
|
| 9 | itg2mono.9 | |- ( ph -> H oR <_ G ) |
|
| 10 | itg2mono.10 | |- ( ph -> S e. RR ) |
|
| 11 | itg2mono.11 | |- A = ( n e. NN |-> { x e. RR | ( T x. ( H ` x ) ) <_ ( ( F ` n ) ` x ) } ) |
|
| 12 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 13 | 1zzd | |- ( ph -> 1 e. ZZ ) |
|
| 14 | simpr | |- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> x e. RR ) |
|
| 15 | readdcl | |- ( ( x e. RR /\ y e. RR ) -> ( x + y ) e. RR ) |
|
| 16 | 15 | adantl | |- ( ( ( ph /\ n e. NN ) /\ ( x e. RR /\ y e. RR ) ) -> ( x + y ) e. RR ) |
| 17 | rge0ssre | |- ( 0 [,) +oo ) C_ RR |
|
| 18 | fss | |- ( ( ( F ` n ) : RR --> ( 0 [,) +oo ) /\ ( 0 [,) +oo ) C_ RR ) -> ( F ` n ) : RR --> RR ) |
|
| 19 | 3 17 18 | sylancl | |- ( ( ph /\ n e. NN ) -> ( F ` n ) : RR --> RR ) |
| 20 | 0xr | |- 0 e. RR* |
|
| 21 | 1xr | |- 1 e. RR* |
|
| 22 | elioo2 | |- ( ( 0 e. RR* /\ 1 e. RR* ) -> ( T e. ( 0 (,) 1 ) <-> ( T e. RR /\ 0 < T /\ T < 1 ) ) ) |
|
| 23 | 20 21 22 | mp2an | |- ( T e. ( 0 (,) 1 ) <-> ( T e. RR /\ 0 < T /\ T < 1 ) ) |
| 24 | 7 23 | sylib | |- ( ph -> ( T e. RR /\ 0 < T /\ T < 1 ) ) |
| 25 | 24 | simp1d | |- ( ph -> T e. RR ) |
| 26 | 25 | renegcld | |- ( ph -> -u T e. RR ) |
| 27 | 8 26 | i1fmulc | |- ( ph -> ( ( RR X. { -u T } ) oF x. H ) e. dom S.1 ) |
| 28 | 27 | adantr | |- ( ( ph /\ n e. NN ) -> ( ( RR X. { -u T } ) oF x. H ) e. dom S.1 ) |
| 29 | i1ff | |- ( ( ( RR X. { -u T } ) oF x. H ) e. dom S.1 -> ( ( RR X. { -u T } ) oF x. H ) : RR --> RR ) |
|
| 30 | 28 29 | syl | |- ( ( ph /\ n e. NN ) -> ( ( RR X. { -u T } ) oF x. H ) : RR --> RR ) |
| 31 | reex | |- RR e. _V |
|
| 32 | 31 | a1i | |- ( ( ph /\ n e. NN ) -> RR e. _V ) |
| 33 | inidm | |- ( RR i^i RR ) = RR |
|
| 34 | 16 19 30 32 32 33 | off | |- ( ( ph /\ n e. NN ) -> ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) : RR --> RR ) |
| 35 | 34 | adantr | |- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) : RR --> RR ) |
| 36 | 35 | ffnd | |- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) Fn RR ) |
| 37 | elpreima | |- ( ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) Fn RR -> ( x e. ( `' ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) " ( -oo (,) 0 ) ) <-> ( x e. RR /\ ( ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) ` x ) e. ( -oo (,) 0 ) ) ) ) |
|
| 38 | 36 37 | syl | |- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( x e. ( `' ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) " ( -oo (,) 0 ) ) <-> ( x e. RR /\ ( ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) ` x ) e. ( -oo (,) 0 ) ) ) ) |
| 39 | 14 38 | mpbirand | |- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( x e. ( `' ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) " ( -oo (,) 0 ) ) <-> ( ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) ` x ) e. ( -oo (,) 0 ) ) ) |
| 40 | elioomnf | |- ( 0 e. RR* -> ( ( ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) ` x ) e. ( -oo (,) 0 ) <-> ( ( ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) ` x ) e. RR /\ ( ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) ` x ) < 0 ) ) ) |
|
| 41 | 20 40 | ax-mp | |- ( ( ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) ` x ) e. ( -oo (,) 0 ) <-> ( ( ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) ` x ) e. RR /\ ( ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) ` x ) < 0 ) ) |
| 42 | 34 | ffvelcdmda | |- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) ` x ) e. RR ) |
| 43 | 42 | biantrurd | |- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( ( ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) ` x ) < 0 <-> ( ( ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) ` x ) e. RR /\ ( ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) ` x ) < 0 ) ) ) |
| 44 | 41 43 | bitr4id | |- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( ( ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) ` x ) e. ( -oo (,) 0 ) <-> ( ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) ` x ) < 0 ) ) |
| 45 | 3 | ffnd | |- ( ( ph /\ n e. NN ) -> ( F ` n ) Fn RR ) |
| 46 | 30 | ffnd | |- ( ( ph /\ n e. NN ) -> ( ( RR X. { -u T } ) oF x. H ) Fn RR ) |
| 47 | eqidd | |- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( ( F ` n ) ` x ) = ( ( F ` n ) ` x ) ) |
|
| 48 | 26 | adantr | |- ( ( ph /\ n e. NN ) -> -u T e. RR ) |
| 49 | i1ff | |- ( H e. dom S.1 -> H : RR --> RR ) |
|
| 50 | 8 49 | syl | |- ( ph -> H : RR --> RR ) |
| 51 | 50 | ffnd | |- ( ph -> H Fn RR ) |
| 52 | 51 | adantr | |- ( ( ph /\ n e. NN ) -> H Fn RR ) |
| 53 | eqidd | |- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( H ` x ) = ( H ` x ) ) |
|
| 54 | 32 48 52 53 | ofc1 | |- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( ( ( RR X. { -u T } ) oF x. H ) ` x ) = ( -u T x. ( H ` x ) ) ) |
| 55 | 25 | recnd | |- ( ph -> T e. CC ) |
| 56 | 55 | ad2antrr | |- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> T e. CC ) |
| 57 | 50 | ffvelcdmda | |- ( ( ph /\ x e. RR ) -> ( H ` x ) e. RR ) |
| 58 | 57 | adantlr | |- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( H ` x ) e. RR ) |
| 59 | 58 | recnd | |- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( H ` x ) e. CC ) |
| 60 | 56 59 | mulneg1d | |- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( -u T x. ( H ` x ) ) = -u ( T x. ( H ` x ) ) ) |
| 61 | 54 60 | eqtrd | |- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( ( ( RR X. { -u T } ) oF x. H ) ` x ) = -u ( T x. ( H ` x ) ) ) |
| 62 | 45 46 32 32 33 47 61 | ofval | |- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) ` x ) = ( ( ( F ` n ) ` x ) + -u ( T x. ( H ` x ) ) ) ) |
| 63 | 19 | ffvelcdmda | |- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( ( F ` n ) ` x ) e. RR ) |
| 64 | 63 | recnd | |- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( ( F ` n ) ` x ) e. CC ) |
| 65 | 25 | adantr | |- ( ( ph /\ x e. RR ) -> T e. RR ) |
| 66 | 65 57 | remulcld | |- ( ( ph /\ x e. RR ) -> ( T x. ( H ` x ) ) e. RR ) |
| 67 | 66 | adantlr | |- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( T x. ( H ` x ) ) e. RR ) |
| 68 | 67 | recnd | |- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( T x. ( H ` x ) ) e. CC ) |
| 69 | 64 68 | negsubd | |- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( ( ( F ` n ) ` x ) + -u ( T x. ( H ` x ) ) ) = ( ( ( F ` n ) ` x ) - ( T x. ( H ` x ) ) ) ) |
| 70 | 62 69 | eqtrd | |- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) ` x ) = ( ( ( F ` n ) ` x ) - ( T x. ( H ` x ) ) ) ) |
| 71 | 70 | breq1d | |- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( ( ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) ` x ) < 0 <-> ( ( ( F ` n ) ` x ) - ( T x. ( H ` x ) ) ) < 0 ) ) |
| 72 | 0red | |- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> 0 e. RR ) |
|
| 73 | 63 67 72 | ltsubaddd | |- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( ( ( ( F ` n ) ` x ) - ( T x. ( H ` x ) ) ) < 0 <-> ( ( F ` n ) ` x ) < ( 0 + ( T x. ( H ` x ) ) ) ) ) |
| 74 | 68 | addlidd | |- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( 0 + ( T x. ( H ` x ) ) ) = ( T x. ( H ` x ) ) ) |
| 75 | 74 | breq2d | |- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( ( ( F ` n ) ` x ) < ( 0 + ( T x. ( H ` x ) ) ) <-> ( ( F ` n ) ` x ) < ( T x. ( H ` x ) ) ) ) |
| 76 | 71 73 75 | 3bitrd | |- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( ( ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) ` x ) < 0 <-> ( ( F ` n ) ` x ) < ( T x. ( H ` x ) ) ) ) |
| 77 | 39 44 76 | 3bitrd | |- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( x e. ( `' ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) " ( -oo (,) 0 ) ) <-> ( ( F ` n ) ` x ) < ( T x. ( H ` x ) ) ) ) |
| 78 | 77 | notbid | |- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( -. x e. ( `' ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) " ( -oo (,) 0 ) ) <-> -. ( ( F ` n ) ` x ) < ( T x. ( H ` x ) ) ) ) |
| 79 | eldif | |- ( x e. ( RR \ ( `' ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) " ( -oo (,) 0 ) ) ) <-> ( x e. RR /\ -. x e. ( `' ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) " ( -oo (,) 0 ) ) ) ) |
|
| 80 | 79 | baib | |- ( x e. RR -> ( x e. ( RR \ ( `' ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) " ( -oo (,) 0 ) ) ) <-> -. x e. ( `' ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) " ( -oo (,) 0 ) ) ) ) |
| 81 | 80 | adantl | |- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( x e. ( RR \ ( `' ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) " ( -oo (,) 0 ) ) ) <-> -. x e. ( `' ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) " ( -oo (,) 0 ) ) ) ) |
| 82 | 67 63 | lenltd | |- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( ( T x. ( H ` x ) ) <_ ( ( F ` n ) ` x ) <-> -. ( ( F ` n ) ` x ) < ( T x. ( H ` x ) ) ) ) |
| 83 | 78 81 82 | 3bitr4d | |- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( x e. ( RR \ ( `' ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) " ( -oo (,) 0 ) ) ) <-> ( T x. ( H ` x ) ) <_ ( ( F ` n ) ` x ) ) ) |
| 84 | 83 | rabbi2dva | |- ( ( ph /\ n e. NN ) -> ( RR i^i ( RR \ ( `' ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) " ( -oo (,) 0 ) ) ) ) = { x e. RR | ( T x. ( H ` x ) ) <_ ( ( F ` n ) ` x ) } ) |
| 85 | rembl | |- RR e. dom vol |
|
| 86 | i1fmbf | |- ( ( ( RR X. { -u T } ) oF x. H ) e. dom S.1 -> ( ( RR X. { -u T } ) oF x. H ) e. MblFn ) |
|
| 87 | 28 86 | syl | |- ( ( ph /\ n e. NN ) -> ( ( RR X. { -u T } ) oF x. H ) e. MblFn ) |
| 88 | 2 87 | mbfadd | |- ( ( ph /\ n e. NN ) -> ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) e. MblFn ) |
| 89 | mbfima | |- ( ( ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) e. MblFn /\ ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) : RR --> RR ) -> ( `' ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) " ( -oo (,) 0 ) ) e. dom vol ) |
|
| 90 | 88 34 89 | syl2anc | |- ( ( ph /\ n e. NN ) -> ( `' ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) " ( -oo (,) 0 ) ) e. dom vol ) |
| 91 | cmmbl | |- ( ( `' ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) " ( -oo (,) 0 ) ) e. dom vol -> ( RR \ ( `' ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) " ( -oo (,) 0 ) ) ) e. dom vol ) |
|
| 92 | 90 91 | syl | |- ( ( ph /\ n e. NN ) -> ( RR \ ( `' ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) " ( -oo (,) 0 ) ) ) e. dom vol ) |
| 93 | inmbl | |- ( ( RR e. dom vol /\ ( RR \ ( `' ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) " ( -oo (,) 0 ) ) ) e. dom vol ) -> ( RR i^i ( RR \ ( `' ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) " ( -oo (,) 0 ) ) ) ) e. dom vol ) |
|
| 94 | 85 92 93 | sylancr | |- ( ( ph /\ n e. NN ) -> ( RR i^i ( RR \ ( `' ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) " ( -oo (,) 0 ) ) ) ) e. dom vol ) |
| 95 | 84 94 | eqeltrrd | |- ( ( ph /\ n e. NN ) -> { x e. RR | ( T x. ( H ` x ) ) <_ ( ( F ` n ) ` x ) } e. dom vol ) |
| 96 | 95 11 | fmptd | |- ( ph -> A : NN --> dom vol ) |
| 97 | 4 | ralrimiva | |- ( ph -> A. n e. NN ( F ` n ) oR <_ ( F ` ( n + 1 ) ) ) |
| 98 | fveq2 | |- ( n = j -> ( F ` n ) = ( F ` j ) ) |
|
| 99 | fvoveq1 | |- ( n = j -> ( F ` ( n + 1 ) ) = ( F ` ( j + 1 ) ) ) |
|
| 100 | 98 99 | breq12d | |- ( n = j -> ( ( F ` n ) oR <_ ( F ` ( n + 1 ) ) <-> ( F ` j ) oR <_ ( F ` ( j + 1 ) ) ) ) |
| 101 | 100 | cbvralvw | |- ( A. n e. NN ( F ` n ) oR <_ ( F ` ( n + 1 ) ) <-> A. j e. NN ( F ` j ) oR <_ ( F ` ( j + 1 ) ) ) |
| 102 | 97 101 | sylib | |- ( ph -> A. j e. NN ( F ` j ) oR <_ ( F ` ( j + 1 ) ) ) |
| 103 | 102 | r19.21bi | |- ( ( ph /\ j e. NN ) -> ( F ` j ) oR <_ ( F ` ( j + 1 ) ) ) |
| 104 | 3 | ralrimiva | |- ( ph -> A. n e. NN ( F ` n ) : RR --> ( 0 [,) +oo ) ) |
| 105 | 98 | feq1d | |- ( n = j -> ( ( F ` n ) : RR --> ( 0 [,) +oo ) <-> ( F ` j ) : RR --> ( 0 [,) +oo ) ) ) |
| 106 | 105 | cbvralvw | |- ( A. n e. NN ( F ` n ) : RR --> ( 0 [,) +oo ) <-> A. j e. NN ( F ` j ) : RR --> ( 0 [,) +oo ) ) |
| 107 | 104 106 | sylib | |- ( ph -> A. j e. NN ( F ` j ) : RR --> ( 0 [,) +oo ) ) |
| 108 | 107 | r19.21bi | |- ( ( ph /\ j e. NN ) -> ( F ` j ) : RR --> ( 0 [,) +oo ) ) |
| 109 | 108 | ffnd | |- ( ( ph /\ j e. NN ) -> ( F ` j ) Fn RR ) |
| 110 | peano2nn | |- ( j e. NN -> ( j + 1 ) e. NN ) |
|
| 111 | fveq2 | |- ( n = ( j + 1 ) -> ( F ` n ) = ( F ` ( j + 1 ) ) ) |
|
| 112 | 111 | feq1d | |- ( n = ( j + 1 ) -> ( ( F ` n ) : RR --> ( 0 [,) +oo ) <-> ( F ` ( j + 1 ) ) : RR --> ( 0 [,) +oo ) ) ) |
| 113 | 112 | rspccva | |- ( ( A. n e. NN ( F ` n ) : RR --> ( 0 [,) +oo ) /\ ( j + 1 ) e. NN ) -> ( F ` ( j + 1 ) ) : RR --> ( 0 [,) +oo ) ) |
| 114 | 104 110 113 | syl2an | |- ( ( ph /\ j e. NN ) -> ( F ` ( j + 1 ) ) : RR --> ( 0 [,) +oo ) ) |
| 115 | 114 | ffnd | |- ( ( ph /\ j e. NN ) -> ( F ` ( j + 1 ) ) Fn RR ) |
| 116 | 31 | a1i | |- ( ( ph /\ j e. NN ) -> RR e. _V ) |
| 117 | eqidd | |- ( ( ( ph /\ j e. NN ) /\ x e. RR ) -> ( ( F ` j ) ` x ) = ( ( F ` j ) ` x ) ) |
|
| 118 | eqidd | |- ( ( ( ph /\ j e. NN ) /\ x e. RR ) -> ( ( F ` ( j + 1 ) ) ` x ) = ( ( F ` ( j + 1 ) ) ` x ) ) |
|
| 119 | 109 115 116 116 33 117 118 | ofrfval | |- ( ( ph /\ j e. NN ) -> ( ( F ` j ) oR <_ ( F ` ( j + 1 ) ) <-> A. x e. RR ( ( F ` j ) ` x ) <_ ( ( F ` ( j + 1 ) ) ` x ) ) ) |
| 120 | 103 119 | mpbid | |- ( ( ph /\ j e. NN ) -> A. x e. RR ( ( F ` j ) ` x ) <_ ( ( F ` ( j + 1 ) ) ` x ) ) |
| 121 | 120 | r19.21bi | |- ( ( ( ph /\ j e. NN ) /\ x e. RR ) -> ( ( F ` j ) ` x ) <_ ( ( F ` ( j + 1 ) ) ` x ) ) |
| 122 | 25 | ad2antrr | |- ( ( ( ph /\ j e. NN ) /\ x e. RR ) -> T e. RR ) |
| 123 | 50 | adantr | |- ( ( ph /\ j e. NN ) -> H : RR --> RR ) |
| 124 | 123 | ffvelcdmda | |- ( ( ( ph /\ j e. NN ) /\ x e. RR ) -> ( H ` x ) e. RR ) |
| 125 | 122 124 | remulcld | |- ( ( ( ph /\ j e. NN ) /\ x e. RR ) -> ( T x. ( H ` x ) ) e. RR ) |
| 126 | fss | |- ( ( ( F ` j ) : RR --> ( 0 [,) +oo ) /\ ( 0 [,) +oo ) C_ RR ) -> ( F ` j ) : RR --> RR ) |
|
| 127 | 108 17 126 | sylancl | |- ( ( ph /\ j e. NN ) -> ( F ` j ) : RR --> RR ) |
| 128 | 127 | ffvelcdmda | |- ( ( ( ph /\ j e. NN ) /\ x e. RR ) -> ( ( F ` j ) ` x ) e. RR ) |
| 129 | fss | |- ( ( ( F ` ( j + 1 ) ) : RR --> ( 0 [,) +oo ) /\ ( 0 [,) +oo ) C_ RR ) -> ( F ` ( j + 1 ) ) : RR --> RR ) |
|
| 130 | 114 17 129 | sylancl | |- ( ( ph /\ j e. NN ) -> ( F ` ( j + 1 ) ) : RR --> RR ) |
| 131 | 130 | ffvelcdmda | |- ( ( ( ph /\ j e. NN ) /\ x e. RR ) -> ( ( F ` ( j + 1 ) ) ` x ) e. RR ) |
| 132 | letr | |- ( ( ( T x. ( H ` x ) ) e. RR /\ ( ( F ` j ) ` x ) e. RR /\ ( ( F ` ( j + 1 ) ) ` x ) e. RR ) -> ( ( ( T x. ( H ` x ) ) <_ ( ( F ` j ) ` x ) /\ ( ( F ` j ) ` x ) <_ ( ( F ` ( j + 1 ) ) ` x ) ) -> ( T x. ( H ` x ) ) <_ ( ( F ` ( j + 1 ) ) ` x ) ) ) |
|
| 133 | 125 128 131 132 | syl3anc | |- ( ( ( ph /\ j e. NN ) /\ x e. RR ) -> ( ( ( T x. ( H ` x ) ) <_ ( ( F ` j ) ` x ) /\ ( ( F ` j ) ` x ) <_ ( ( F ` ( j + 1 ) ) ` x ) ) -> ( T x. ( H ` x ) ) <_ ( ( F ` ( j + 1 ) ) ` x ) ) ) |
| 134 | 121 133 | mpan2d | |- ( ( ( ph /\ j e. NN ) /\ x e. RR ) -> ( ( T x. ( H ` x ) ) <_ ( ( F ` j ) ` x ) -> ( T x. ( H ` x ) ) <_ ( ( F ` ( j + 1 ) ) ` x ) ) ) |
| 135 | 134 | ss2rabdv | |- ( ( ph /\ j e. NN ) -> { x e. RR | ( T x. ( H ` x ) ) <_ ( ( F ` j ) ` x ) } C_ { x e. RR | ( T x. ( H ` x ) ) <_ ( ( F ` ( j + 1 ) ) ` x ) } ) |
| 136 | 98 | fveq1d | |- ( n = j -> ( ( F ` n ) ` x ) = ( ( F ` j ) ` x ) ) |
| 137 | 136 | breq2d | |- ( n = j -> ( ( T x. ( H ` x ) ) <_ ( ( F ` n ) ` x ) <-> ( T x. ( H ` x ) ) <_ ( ( F ` j ) ` x ) ) ) |
| 138 | 137 | rabbidv | |- ( n = j -> { x e. RR | ( T x. ( H ` x ) ) <_ ( ( F ` n ) ` x ) } = { x e. RR | ( T x. ( H ` x ) ) <_ ( ( F ` j ) ` x ) } ) |
| 139 | 31 | rabex | |- { x e. RR | ( T x. ( H ` x ) ) <_ ( ( F ` j ) ` x ) } e. _V |
| 140 | 138 11 139 | fvmpt | |- ( j e. NN -> ( A ` j ) = { x e. RR | ( T x. ( H ` x ) ) <_ ( ( F ` j ) ` x ) } ) |
| 141 | 140 | adantl | |- ( ( ph /\ j e. NN ) -> ( A ` j ) = { x e. RR | ( T x. ( H ` x ) ) <_ ( ( F ` j ) ` x ) } ) |
| 142 | 110 | adantl | |- ( ( ph /\ j e. NN ) -> ( j + 1 ) e. NN ) |
| 143 | 111 | fveq1d | |- ( n = ( j + 1 ) -> ( ( F ` n ) ` x ) = ( ( F ` ( j + 1 ) ) ` x ) ) |
| 144 | 143 | breq2d | |- ( n = ( j + 1 ) -> ( ( T x. ( H ` x ) ) <_ ( ( F ` n ) ` x ) <-> ( T x. ( H ` x ) ) <_ ( ( F ` ( j + 1 ) ) ` x ) ) ) |
| 145 | 144 | rabbidv | |- ( n = ( j + 1 ) -> { x e. RR | ( T x. ( H ` x ) ) <_ ( ( F ` n ) ` x ) } = { x e. RR | ( T x. ( H ` x ) ) <_ ( ( F ` ( j + 1 ) ) ` x ) } ) |
| 146 | 31 | rabex | |- { x e. RR | ( T x. ( H ` x ) ) <_ ( ( F ` ( j + 1 ) ) ` x ) } e. _V |
| 147 | 145 11 146 | fvmpt | |- ( ( j + 1 ) e. NN -> ( A ` ( j + 1 ) ) = { x e. RR | ( T x. ( H ` x ) ) <_ ( ( F ` ( j + 1 ) ) ` x ) } ) |
| 148 | 142 147 | syl | |- ( ( ph /\ j e. NN ) -> ( A ` ( j + 1 ) ) = { x e. RR | ( T x. ( H ` x ) ) <_ ( ( F ` ( j + 1 ) ) ` x ) } ) |
| 149 | 135 141 148 | 3sstr4d | |- ( ( ph /\ j e. NN ) -> ( A ` j ) C_ ( A ` ( j + 1 ) ) ) |
| 150 | 66 | adantrr | |- ( ( ph /\ ( x e. RR /\ 0 < ( H ` x ) ) ) -> ( T x. ( H ` x ) ) e. RR ) |
| 151 | 57 | adantrr | |- ( ( ph /\ ( x e. RR /\ 0 < ( H ` x ) ) ) -> ( H ` x ) e. RR ) |
| 152 | 63 | an32s | |- ( ( ( ph /\ x e. RR ) /\ n e. NN ) -> ( ( F ` n ) ` x ) e. RR ) |
| 153 | 152 | fmpttd | |- ( ( ph /\ x e. RR ) -> ( n e. NN |-> ( ( F ` n ) ` x ) ) : NN --> RR ) |
| 154 | 153 | frnd | |- ( ( ph /\ x e. RR ) -> ran ( n e. NN |-> ( ( F ` n ) ` x ) ) C_ RR ) |
| 155 | 1nn | |- 1 e. NN |
|
| 156 | eqid | |- ( n e. NN |-> ( ( F ` n ) ` x ) ) = ( n e. NN |-> ( ( F ` n ) ` x ) ) |
|
| 157 | 156 152 | dmmptd | |- ( ( ph /\ x e. RR ) -> dom ( n e. NN |-> ( ( F ` n ) ` x ) ) = NN ) |
| 158 | 155 157 | eleqtrrid | |- ( ( ph /\ x e. RR ) -> 1 e. dom ( n e. NN |-> ( ( F ` n ) ` x ) ) ) |
| 159 | 158 | ne0d | |- ( ( ph /\ x e. RR ) -> dom ( n e. NN |-> ( ( F ` n ) ` x ) ) =/= (/) ) |
| 160 | dm0rn0 | |- ( dom ( n e. NN |-> ( ( F ` n ) ` x ) ) = (/) <-> ran ( n e. NN |-> ( ( F ` n ) ` x ) ) = (/) ) |
|
| 161 | 160 | necon3bii | |- ( dom ( n e. NN |-> ( ( F ` n ) ` x ) ) =/= (/) <-> ran ( n e. NN |-> ( ( F ` n ) ` x ) ) =/= (/) ) |
| 162 | 159 161 | sylib | |- ( ( ph /\ x e. RR ) -> ran ( n e. NN |-> ( ( F ` n ) ` x ) ) =/= (/) ) |
| 163 | 153 | ffnd | |- ( ( ph /\ x e. RR ) -> ( n e. NN |-> ( ( F ` n ) ` x ) ) Fn NN ) |
| 164 | breq1 | |- ( z = ( ( n e. NN |-> ( ( F ` n ) ` x ) ) ` m ) -> ( z <_ y <-> ( ( n e. NN |-> ( ( F ` n ) ` x ) ) ` m ) <_ y ) ) |
|
| 165 | 164 | ralrn | |- ( ( n e. NN |-> ( ( F ` n ) ` x ) ) Fn NN -> ( A. z e. ran ( n e. NN |-> ( ( F ` n ) ` x ) ) z <_ y <-> A. m e. NN ( ( n e. NN |-> ( ( F ` n ) ` x ) ) ` m ) <_ y ) ) |
| 166 | 163 165 | syl | |- ( ( ph /\ x e. RR ) -> ( A. z e. ran ( n e. NN |-> ( ( F ` n ) ` x ) ) z <_ y <-> A. m e. NN ( ( n e. NN |-> ( ( F ` n ) ` x ) ) ` m ) <_ y ) ) |
| 167 | fveq2 | |- ( n = m -> ( F ` n ) = ( F ` m ) ) |
|
| 168 | 167 | fveq1d | |- ( n = m -> ( ( F ` n ) ` x ) = ( ( F ` m ) ` x ) ) |
| 169 | fvex | |- ( ( F ` m ) ` x ) e. _V |
|
| 170 | 168 156 169 | fvmpt | |- ( m e. NN -> ( ( n e. NN |-> ( ( F ` n ) ` x ) ) ` m ) = ( ( F ` m ) ` x ) ) |
| 171 | 170 | breq1d | |- ( m e. NN -> ( ( ( n e. NN |-> ( ( F ` n ) ` x ) ) ` m ) <_ y <-> ( ( F ` m ) ` x ) <_ y ) ) |
| 172 | 171 | ralbiia | |- ( A. m e. NN ( ( n e. NN |-> ( ( F ` n ) ` x ) ) ` m ) <_ y <-> A. m e. NN ( ( F ` m ) ` x ) <_ y ) |
| 173 | 168 | breq1d | |- ( n = m -> ( ( ( F ` n ) ` x ) <_ y <-> ( ( F ` m ) ` x ) <_ y ) ) |
| 174 | 173 | cbvralvw | |- ( A. n e. NN ( ( F ` n ) ` x ) <_ y <-> A. m e. NN ( ( F ` m ) ` x ) <_ y ) |
| 175 | 172 174 | bitr4i | |- ( A. m e. NN ( ( n e. NN |-> ( ( F ` n ) ` x ) ) ` m ) <_ y <-> A. n e. NN ( ( F ` n ) ` x ) <_ y ) |
| 176 | 166 175 | bitrdi | |- ( ( ph /\ x e. RR ) -> ( A. z e. ran ( n e. NN |-> ( ( F ` n ) ` x ) ) z <_ y <-> A. n e. NN ( ( F ` n ) ` x ) <_ y ) ) |
| 177 | 176 | rexbidv | |- ( ( ph /\ x e. RR ) -> ( E. y e. RR A. z e. ran ( n e. NN |-> ( ( F ` n ) ` x ) ) z <_ y <-> E. y e. RR A. n e. NN ( ( F ` n ) ` x ) <_ y ) ) |
| 178 | 5 177 | mpbird | |- ( ( ph /\ x e. RR ) -> E. y e. RR A. z e. ran ( n e. NN |-> ( ( F ` n ) ` x ) ) z <_ y ) |
| 179 | 154 162 178 | suprcld | |- ( ( ph /\ x e. RR ) -> sup ( ran ( n e. NN |-> ( ( F ` n ) ` x ) ) , RR , < ) e. RR ) |
| 180 | 179 | adantrr | |- ( ( ph /\ ( x e. RR /\ 0 < ( H ` x ) ) ) -> sup ( ran ( n e. NN |-> ( ( F ` n ) ` x ) ) , RR , < ) e. RR ) |
| 181 | 24 | simp3d | |- ( ph -> T < 1 ) |
| 182 | 181 | adantr | |- ( ( ph /\ ( x e. RR /\ 0 < ( H ` x ) ) ) -> T < 1 ) |
| 183 | 25 | adantr | |- ( ( ph /\ ( x e. RR /\ 0 < ( H ` x ) ) ) -> T e. RR ) |
| 184 | 1red | |- ( ( ph /\ ( x e. RR /\ 0 < ( H ` x ) ) ) -> 1 e. RR ) |
|
| 185 | simprr | |- ( ( ph /\ ( x e. RR /\ 0 < ( H ` x ) ) ) -> 0 < ( H ` x ) ) |
|
| 186 | ltmul1 | |- ( ( T e. RR /\ 1 e. RR /\ ( ( H ` x ) e. RR /\ 0 < ( H ` x ) ) ) -> ( T < 1 <-> ( T x. ( H ` x ) ) < ( 1 x. ( H ` x ) ) ) ) |
|
| 187 | 183 184 151 185 186 | syl112anc | |- ( ( ph /\ ( x e. RR /\ 0 < ( H ` x ) ) ) -> ( T < 1 <-> ( T x. ( H ` x ) ) < ( 1 x. ( H ` x ) ) ) ) |
| 188 | 182 187 | mpbid | |- ( ( ph /\ ( x e. RR /\ 0 < ( H ` x ) ) ) -> ( T x. ( H ` x ) ) < ( 1 x. ( H ` x ) ) ) |
| 189 | 151 | recnd | |- ( ( ph /\ ( x e. RR /\ 0 < ( H ` x ) ) ) -> ( H ` x ) e. CC ) |
| 190 | 189 | mullidd | |- ( ( ph /\ ( x e. RR /\ 0 < ( H ` x ) ) ) -> ( 1 x. ( H ` x ) ) = ( H ` x ) ) |
| 191 | 188 190 | breqtrd | |- ( ( ph /\ ( x e. RR /\ 0 < ( H ` x ) ) ) -> ( T x. ( H ` x ) ) < ( H ` x ) ) |
| 192 | 179 1 | fmptd | |- ( ph -> G : RR --> RR ) |
| 193 | 192 | ffnd | |- ( ph -> G Fn RR ) |
| 194 | 31 | a1i | |- ( ph -> RR e. _V ) |
| 195 | eqidd | |- ( ( ph /\ y e. RR ) -> ( H ` y ) = ( H ` y ) ) |
|
| 196 | fveq2 | |- ( x = y -> ( ( F ` n ) ` x ) = ( ( F ` n ) ` y ) ) |
|
| 197 | 196 | mpteq2dv | |- ( x = y -> ( n e. NN |-> ( ( F ` n ) ` x ) ) = ( n e. NN |-> ( ( F ` n ) ` y ) ) ) |
| 198 | 197 | rneqd | |- ( x = y -> ran ( n e. NN |-> ( ( F ` n ) ` x ) ) = ran ( n e. NN |-> ( ( F ` n ) ` y ) ) ) |
| 199 | 198 | supeq1d | |- ( x = y -> sup ( ran ( n e. NN |-> ( ( F ` n ) ` x ) ) , RR , < ) = sup ( ran ( n e. NN |-> ( ( F ` n ) ` y ) ) , RR , < ) ) |
| 200 | ltso | |- < Or RR |
|
| 201 | 200 | supex | |- sup ( ran ( n e. NN |-> ( ( F ` n ) ` y ) ) , RR , < ) e. _V |
| 202 | 199 1 201 | fvmpt | |- ( y e. RR -> ( G ` y ) = sup ( ran ( n e. NN |-> ( ( F ` n ) ` y ) ) , RR , < ) ) |
| 203 | 202 | adantl | |- ( ( ph /\ y e. RR ) -> ( G ` y ) = sup ( ran ( n e. NN |-> ( ( F ` n ) ` y ) ) , RR , < ) ) |
| 204 | 51 193 194 194 33 195 203 | ofrfval | |- ( ph -> ( H oR <_ G <-> A. y e. RR ( H ` y ) <_ sup ( ran ( n e. NN |-> ( ( F ` n ) ` y ) ) , RR , < ) ) ) |
| 205 | 9 204 | mpbid | |- ( ph -> A. y e. RR ( H ` y ) <_ sup ( ran ( n e. NN |-> ( ( F ` n ) ` y ) ) , RR , < ) ) |
| 206 | fveq2 | |- ( x = y -> ( H ` x ) = ( H ` y ) ) |
|
| 207 | 206 199 | breq12d | |- ( x = y -> ( ( H ` x ) <_ sup ( ran ( n e. NN |-> ( ( F ` n ) ` x ) ) , RR , < ) <-> ( H ` y ) <_ sup ( ran ( n e. NN |-> ( ( F ` n ) ` y ) ) , RR , < ) ) ) |
| 208 | 207 | cbvralvw | |- ( A. x e. RR ( H ` x ) <_ sup ( ran ( n e. NN |-> ( ( F ` n ) ` x ) ) , RR , < ) <-> A. y e. RR ( H ` y ) <_ sup ( ran ( n e. NN |-> ( ( F ` n ) ` y ) ) , RR , < ) ) |
| 209 | 205 208 | sylibr | |- ( ph -> A. x e. RR ( H ` x ) <_ sup ( ran ( n e. NN |-> ( ( F ` n ) ` x ) ) , RR , < ) ) |
| 210 | 209 | r19.21bi | |- ( ( ph /\ x e. RR ) -> ( H ` x ) <_ sup ( ran ( n e. NN |-> ( ( F ` n ) ` x ) ) , RR , < ) ) |
| 211 | 210 | adantrr | |- ( ( ph /\ ( x e. RR /\ 0 < ( H ` x ) ) ) -> ( H ` x ) <_ sup ( ran ( n e. NN |-> ( ( F ` n ) ` x ) ) , RR , < ) ) |
| 212 | 150 151 180 191 211 | ltletrd | |- ( ( ph /\ ( x e. RR /\ 0 < ( H ` x ) ) ) -> ( T x. ( H ` x ) ) < sup ( ran ( n e. NN |-> ( ( F ` n ) ` x ) ) , RR , < ) ) |
| 213 | 154 | adantrr | |- ( ( ph /\ ( x e. RR /\ 0 < ( H ` x ) ) ) -> ran ( n e. NN |-> ( ( F ` n ) ` x ) ) C_ RR ) |
| 214 | 162 | adantrr | |- ( ( ph /\ ( x e. RR /\ 0 < ( H ` x ) ) ) -> ran ( n e. NN |-> ( ( F ` n ) ` x ) ) =/= (/) ) |
| 215 | 178 | adantrr | |- ( ( ph /\ ( x e. RR /\ 0 < ( H ` x ) ) ) -> E. y e. RR A. z e. ran ( n e. NN |-> ( ( F ` n ) ` x ) ) z <_ y ) |
| 216 | suprlub | |- ( ( ( ran ( n e. NN |-> ( ( F ` n ) ` x ) ) C_ RR /\ ran ( n e. NN |-> ( ( F ` n ) ` x ) ) =/= (/) /\ E. y e. RR A. z e. ran ( n e. NN |-> ( ( F ` n ) ` x ) ) z <_ y ) /\ ( T x. ( H ` x ) ) e. RR ) -> ( ( T x. ( H ` x ) ) < sup ( ran ( n e. NN |-> ( ( F ` n ) ` x ) ) , RR , < ) <-> E. w e. ran ( n e. NN |-> ( ( F ` n ) ` x ) ) ( T x. ( H ` x ) ) < w ) ) |
|
| 217 | 213 214 215 150 216 | syl31anc | |- ( ( ph /\ ( x e. RR /\ 0 < ( H ` x ) ) ) -> ( ( T x. ( H ` x ) ) < sup ( ran ( n e. NN |-> ( ( F ` n ) ` x ) ) , RR , < ) <-> E. w e. ran ( n e. NN |-> ( ( F ` n ) ` x ) ) ( T x. ( H ` x ) ) < w ) ) |
| 218 | 212 217 | mpbid | |- ( ( ph /\ ( x e. RR /\ 0 < ( H ` x ) ) ) -> E. w e. ran ( n e. NN |-> ( ( F ` n ) ` x ) ) ( T x. ( H ` x ) ) < w ) |
| 219 | 163 | adantrr | |- ( ( ph /\ ( x e. RR /\ 0 < ( H ` x ) ) ) -> ( n e. NN |-> ( ( F ` n ) ` x ) ) Fn NN ) |
| 220 | breq2 | |- ( w = ( ( n e. NN |-> ( ( F ` n ) ` x ) ) ` j ) -> ( ( T x. ( H ` x ) ) < w <-> ( T x. ( H ` x ) ) < ( ( n e. NN |-> ( ( F ` n ) ` x ) ) ` j ) ) ) |
|
| 221 | 220 | rexrn | |- ( ( n e. NN |-> ( ( F ` n ) ` x ) ) Fn NN -> ( E. w e. ran ( n e. NN |-> ( ( F ` n ) ` x ) ) ( T x. ( H ` x ) ) < w <-> E. j e. NN ( T x. ( H ` x ) ) < ( ( n e. NN |-> ( ( F ` n ) ` x ) ) ` j ) ) ) |
| 222 | 219 221 | syl | |- ( ( ph /\ ( x e. RR /\ 0 < ( H ` x ) ) ) -> ( E. w e. ran ( n e. NN |-> ( ( F ` n ) ` x ) ) ( T x. ( H ` x ) ) < w <-> E. j e. NN ( T x. ( H ` x ) ) < ( ( n e. NN |-> ( ( F ` n ) ` x ) ) ` j ) ) ) |
| 223 | fvex | |- ( ( F ` j ) ` x ) e. _V |
|
| 224 | 136 156 223 | fvmpt | |- ( j e. NN -> ( ( n e. NN |-> ( ( F ` n ) ` x ) ) ` j ) = ( ( F ` j ) ` x ) ) |
| 225 | 224 | breq2d | |- ( j e. NN -> ( ( T x. ( H ` x ) ) < ( ( n e. NN |-> ( ( F ` n ) ` x ) ) ` j ) <-> ( T x. ( H ` x ) ) < ( ( F ` j ) ` x ) ) ) |
| 226 | 225 | rexbiia | |- ( E. j e. NN ( T x. ( H ` x ) ) < ( ( n e. NN |-> ( ( F ` n ) ` x ) ) ` j ) <-> E. j e. NN ( T x. ( H ` x ) ) < ( ( F ` j ) ` x ) ) |
| 227 | 222 226 | bitrdi | |- ( ( ph /\ ( x e. RR /\ 0 < ( H ` x ) ) ) -> ( E. w e. ran ( n e. NN |-> ( ( F ` n ) ` x ) ) ( T x. ( H ` x ) ) < w <-> E. j e. NN ( T x. ( H ` x ) ) < ( ( F ` j ) ` x ) ) ) |
| 228 | 218 227 | mpbid | |- ( ( ph /\ ( x e. RR /\ 0 < ( H ` x ) ) ) -> E. j e. NN ( T x. ( H ` x ) ) < ( ( F ` j ) ` x ) ) |
| 229 | 183 151 | remulcld | |- ( ( ph /\ ( x e. RR /\ 0 < ( H ` x ) ) ) -> ( T x. ( H ` x ) ) e. RR ) |
| 230 | 108 | adantlr | |- ( ( ( ph /\ x e. RR ) /\ j e. NN ) -> ( F ` j ) : RR --> ( 0 [,) +oo ) ) |
| 231 | simplr | |- ( ( ( ph /\ x e. RR ) /\ j e. NN ) -> x e. RR ) |
|
| 232 | 230 231 | ffvelcdmd | |- ( ( ( ph /\ x e. RR ) /\ j e. NN ) -> ( ( F ` j ) ` x ) e. ( 0 [,) +oo ) ) |
| 233 | elrege0 | |- ( ( ( F ` j ) ` x ) e. ( 0 [,) +oo ) <-> ( ( ( F ` j ) ` x ) e. RR /\ 0 <_ ( ( F ` j ) ` x ) ) ) |
|
| 234 | 232 233 | sylib | |- ( ( ( ph /\ x e. RR ) /\ j e. NN ) -> ( ( ( F ` j ) ` x ) e. RR /\ 0 <_ ( ( F ` j ) ` x ) ) ) |
| 235 | 234 | simpld | |- ( ( ( ph /\ x e. RR ) /\ j e. NN ) -> ( ( F ` j ) ` x ) e. RR ) |
| 236 | 235 | adantlrr | |- ( ( ( ph /\ ( x e. RR /\ 0 < ( H ` x ) ) ) /\ j e. NN ) -> ( ( F ` j ) ` x ) e. RR ) |
| 237 | ltle | |- ( ( ( T x. ( H ` x ) ) e. RR /\ ( ( F ` j ) ` x ) e. RR ) -> ( ( T x. ( H ` x ) ) < ( ( F ` j ) ` x ) -> ( T x. ( H ` x ) ) <_ ( ( F ` j ) ` x ) ) ) |
|
| 238 | 229 236 237 | syl2an2r | |- ( ( ( ph /\ ( x e. RR /\ 0 < ( H ` x ) ) ) /\ j e. NN ) -> ( ( T x. ( H ` x ) ) < ( ( F ` j ) ` x ) -> ( T x. ( H ` x ) ) <_ ( ( F ` j ) ` x ) ) ) |
| 239 | 238 | reximdva | |- ( ( ph /\ ( x e. RR /\ 0 < ( H ` x ) ) ) -> ( E. j e. NN ( T x. ( H ` x ) ) < ( ( F ` j ) ` x ) -> E. j e. NN ( T x. ( H ` x ) ) <_ ( ( F ` j ) ` x ) ) ) |
| 240 | 228 239 | mpd | |- ( ( ph /\ ( x e. RR /\ 0 < ( H ` x ) ) ) -> E. j e. NN ( T x. ( H ` x ) ) <_ ( ( F ` j ) ` x ) ) |
| 241 | 240 | anassrs | |- ( ( ( ph /\ x e. RR ) /\ 0 < ( H ` x ) ) -> E. j e. NN ( T x. ( H ` x ) ) <_ ( ( F ` j ) ` x ) ) |
| 242 | 155 | ne0ii | |- NN =/= (/) |
| 243 | 66 | adantrr | |- ( ( ph /\ ( x e. RR /\ ( H ` x ) <_ 0 ) ) -> ( T x. ( H ` x ) ) e. RR ) |
| 244 | 243 | adantr | |- ( ( ( ph /\ ( x e. RR /\ ( H ` x ) <_ 0 ) ) /\ j e. NN ) -> ( T x. ( H ` x ) ) e. RR ) |
| 245 | 0red | |- ( ( ( ph /\ ( x e. RR /\ ( H ` x ) <_ 0 ) ) /\ j e. NN ) -> 0 e. RR ) |
|
| 246 | 234 | adantlrr | |- ( ( ( ph /\ ( x e. RR /\ ( H ` x ) <_ 0 ) ) /\ j e. NN ) -> ( ( ( F ` j ) ` x ) e. RR /\ 0 <_ ( ( F ` j ) ` x ) ) ) |
| 247 | 246 | simpld | |- ( ( ( ph /\ ( x e. RR /\ ( H ` x ) <_ 0 ) ) /\ j e. NN ) -> ( ( F ` j ) ` x ) e. RR ) |
| 248 | simplrr | |- ( ( ( ph /\ ( x e. RR /\ ( H ` x ) <_ 0 ) ) /\ j e. NN ) -> ( H ` x ) <_ 0 ) |
|
| 249 | 57 | adantrr | |- ( ( ph /\ ( x e. RR /\ ( H ` x ) <_ 0 ) ) -> ( H ` x ) e. RR ) |
| 250 | 249 | adantr | |- ( ( ( ph /\ ( x e. RR /\ ( H ` x ) <_ 0 ) ) /\ j e. NN ) -> ( H ` x ) e. RR ) |
| 251 | 25 | ad2antrr | |- ( ( ( ph /\ ( x e. RR /\ ( H ` x ) <_ 0 ) ) /\ j e. NN ) -> T e. RR ) |
| 252 | 24 | simp2d | |- ( ph -> 0 < T ) |
| 253 | 252 | ad2antrr | |- ( ( ( ph /\ ( x e. RR /\ ( H ` x ) <_ 0 ) ) /\ j e. NN ) -> 0 < T ) |
| 254 | lemul2 | |- ( ( ( H ` x ) e. RR /\ 0 e. RR /\ ( T e. RR /\ 0 < T ) ) -> ( ( H ` x ) <_ 0 <-> ( T x. ( H ` x ) ) <_ ( T x. 0 ) ) ) |
|
| 255 | 250 245 251 253 254 | syl112anc | |- ( ( ( ph /\ ( x e. RR /\ ( H ` x ) <_ 0 ) ) /\ j e. NN ) -> ( ( H ` x ) <_ 0 <-> ( T x. ( H ` x ) ) <_ ( T x. 0 ) ) ) |
| 256 | 248 255 | mpbid | |- ( ( ( ph /\ ( x e. RR /\ ( H ` x ) <_ 0 ) ) /\ j e. NN ) -> ( T x. ( H ` x ) ) <_ ( T x. 0 ) ) |
| 257 | 251 | recnd | |- ( ( ( ph /\ ( x e. RR /\ ( H ` x ) <_ 0 ) ) /\ j e. NN ) -> T e. CC ) |
| 258 | 257 | mul01d | |- ( ( ( ph /\ ( x e. RR /\ ( H ` x ) <_ 0 ) ) /\ j e. NN ) -> ( T x. 0 ) = 0 ) |
| 259 | 256 258 | breqtrd | |- ( ( ( ph /\ ( x e. RR /\ ( H ` x ) <_ 0 ) ) /\ j e. NN ) -> ( T x. ( H ` x ) ) <_ 0 ) |
| 260 | 246 | simprd | |- ( ( ( ph /\ ( x e. RR /\ ( H ` x ) <_ 0 ) ) /\ j e. NN ) -> 0 <_ ( ( F ` j ) ` x ) ) |
| 261 | 244 245 247 259 260 | letrd | |- ( ( ( ph /\ ( x e. RR /\ ( H ` x ) <_ 0 ) ) /\ j e. NN ) -> ( T x. ( H ` x ) ) <_ ( ( F ` j ) ` x ) ) |
| 262 | 261 | ralrimiva | |- ( ( ph /\ ( x e. RR /\ ( H ` x ) <_ 0 ) ) -> A. j e. NN ( T x. ( H ` x ) ) <_ ( ( F ` j ) ` x ) ) |
| 263 | r19.2z | |- ( ( NN =/= (/) /\ A. j e. NN ( T x. ( H ` x ) ) <_ ( ( F ` j ) ` x ) ) -> E. j e. NN ( T x. ( H ` x ) ) <_ ( ( F ` j ) ` x ) ) |
|
| 264 | 242 262 263 | sylancr | |- ( ( ph /\ ( x e. RR /\ ( H ` x ) <_ 0 ) ) -> E. j e. NN ( T x. ( H ` x ) ) <_ ( ( F ` j ) ` x ) ) |
| 265 | 264 | anassrs | |- ( ( ( ph /\ x e. RR ) /\ ( H ` x ) <_ 0 ) -> E. j e. NN ( T x. ( H ` x ) ) <_ ( ( F ` j ) ` x ) ) |
| 266 | 0red | |- ( ( ph /\ x e. RR ) -> 0 e. RR ) |
|
| 267 | 241 265 266 57 | ltlecasei | |- ( ( ph /\ x e. RR ) -> E. j e. NN ( T x. ( H ` x ) ) <_ ( ( F ` j ) ` x ) ) |
| 268 | 267 | ralrimiva | |- ( ph -> A. x e. RR E. j e. NN ( T x. ( H ` x ) ) <_ ( ( F ` j ) ` x ) ) |
| 269 | rabid2 | |- ( RR = { x e. RR | E. j e. NN ( T x. ( H ` x ) ) <_ ( ( F ` j ) ` x ) } <-> A. x e. RR E. j e. NN ( T x. ( H ` x ) ) <_ ( ( F ` j ) ` x ) ) |
|
| 270 | 268 269 | sylibr | |- ( ph -> RR = { x e. RR | E. j e. NN ( T x. ( H ` x ) ) <_ ( ( F ` j ) ` x ) } ) |
| 271 | iunrab | |- U_ j e. NN { x e. RR | ( T x. ( H ` x ) ) <_ ( ( F ` j ) ` x ) } = { x e. RR | E. j e. NN ( T x. ( H ` x ) ) <_ ( ( F ` j ) ` x ) } |
|
| 272 | 270 271 | eqtr4di | |- ( ph -> RR = U_ j e. NN { x e. RR | ( T x. ( H ` x ) ) <_ ( ( F ` j ) ` x ) } ) |
| 273 | 141 | iuneq2dv | |- ( ph -> U_ j e. NN ( A ` j ) = U_ j e. NN { x e. RR | ( T x. ( H ` x ) ) <_ ( ( F ` j ) ` x ) } ) |
| 274 | 96 | ffnd | |- ( ph -> A Fn NN ) |
| 275 | fniunfv | |- ( A Fn NN -> U_ j e. NN ( A ` j ) = U. ran A ) |
|
| 276 | 274 275 | syl | |- ( ph -> U_ j e. NN ( A ` j ) = U. ran A ) |
| 277 | 272 273 276 | 3eqtr2rd | |- ( ph -> U. ran A = RR ) |
| 278 | eqid | |- ( x e. RR |-> if ( x e. ( A ` j ) , ( H ` x ) , 0 ) ) = ( x e. RR |-> if ( x e. ( A ` j ) , ( H ` x ) , 0 ) ) |
|
| 279 | 96 149 277 8 278 | itg1climres | |- ( ph -> ( j e. NN |-> ( S.1 ` ( x e. RR |-> if ( x e. ( A ` j ) , ( H ` x ) , 0 ) ) ) ) ~~> ( S.1 ` H ) ) |
| 280 | nnex | |- NN e. _V |
|
| 281 | 280 | mptex | |- ( j e. NN |-> ( T x. ( S.1 ` ( x e. RR |-> if ( x e. ( A ` j ) , ( H ` x ) , 0 ) ) ) ) ) e. _V |
| 282 | 281 | a1i | |- ( ph -> ( j e. NN |-> ( T x. ( S.1 ` ( x e. RR |-> if ( x e. ( A ` j ) , ( H ` x ) , 0 ) ) ) ) ) e. _V ) |
| 283 | fveq2 | |- ( j = k -> ( A ` j ) = ( A ` k ) ) |
|
| 284 | 283 | eleq2d | |- ( j = k -> ( x e. ( A ` j ) <-> x e. ( A ` k ) ) ) |
| 285 | 284 | ifbid | |- ( j = k -> if ( x e. ( A ` j ) , ( H ` x ) , 0 ) = if ( x e. ( A ` k ) , ( H ` x ) , 0 ) ) |
| 286 | 285 | mpteq2dv | |- ( j = k -> ( x e. RR |-> if ( x e. ( A ` j ) , ( H ` x ) , 0 ) ) = ( x e. RR |-> if ( x e. ( A ` k ) , ( H ` x ) , 0 ) ) ) |
| 287 | 286 | fveq2d | |- ( j = k -> ( S.1 ` ( x e. RR |-> if ( x e. ( A ` j ) , ( H ` x ) , 0 ) ) ) = ( S.1 ` ( x e. RR |-> if ( x e. ( A ` k ) , ( H ` x ) , 0 ) ) ) ) |
| 288 | eqid | |- ( j e. NN |-> ( S.1 ` ( x e. RR |-> if ( x e. ( A ` j ) , ( H ` x ) , 0 ) ) ) ) = ( j e. NN |-> ( S.1 ` ( x e. RR |-> if ( x e. ( A ` j ) , ( H ` x ) , 0 ) ) ) ) |
|
| 289 | fvex | |- ( S.1 ` ( x e. RR |-> if ( x e. ( A ` k ) , ( H ` x ) , 0 ) ) ) e. _V |
|
| 290 | 287 288 289 | fvmpt | |- ( k e. NN -> ( ( j e. NN |-> ( S.1 ` ( x e. RR |-> if ( x e. ( A ` j ) , ( H ` x ) , 0 ) ) ) ) ` k ) = ( S.1 ` ( x e. RR |-> if ( x e. ( A ` k ) , ( H ` x ) , 0 ) ) ) ) |
| 291 | 290 | adantl | |- ( ( ph /\ k e. NN ) -> ( ( j e. NN |-> ( S.1 ` ( x e. RR |-> if ( x e. ( A ` j ) , ( H ` x ) , 0 ) ) ) ) ` k ) = ( S.1 ` ( x e. RR |-> if ( x e. ( A ` k ) , ( H ` x ) , 0 ) ) ) ) |
| 292 | 96 | ffvelcdmda | |- ( ( ph /\ k e. NN ) -> ( A ` k ) e. dom vol ) |
| 293 | eqid | |- ( x e. RR |-> if ( x e. ( A ` k ) , ( H ` x ) , 0 ) ) = ( x e. RR |-> if ( x e. ( A ` k ) , ( H ` x ) , 0 ) ) |
|
| 294 | 293 | i1fres | |- ( ( H e. dom S.1 /\ ( A ` k ) e. dom vol ) -> ( x e. RR |-> if ( x e. ( A ` k ) , ( H ` x ) , 0 ) ) e. dom S.1 ) |
| 295 | 8 292 294 | syl2an2r | |- ( ( ph /\ k e. NN ) -> ( x e. RR |-> if ( x e. ( A ` k ) , ( H ` x ) , 0 ) ) e. dom S.1 ) |
| 296 | itg1cl | |- ( ( x e. RR |-> if ( x e. ( A ` k ) , ( H ` x ) , 0 ) ) e. dom S.1 -> ( S.1 ` ( x e. RR |-> if ( x e. ( A ` k ) , ( H ` x ) , 0 ) ) ) e. RR ) |
|
| 297 | 295 296 | syl | |- ( ( ph /\ k e. NN ) -> ( S.1 ` ( x e. RR |-> if ( x e. ( A ` k ) , ( H ` x ) , 0 ) ) ) e. RR ) |
| 298 | 291 297 | eqeltrd | |- ( ( ph /\ k e. NN ) -> ( ( j e. NN |-> ( S.1 ` ( x e. RR |-> if ( x e. ( A ` j ) , ( H ` x ) , 0 ) ) ) ) ` k ) e. RR ) |
| 299 | 298 | recnd | |- ( ( ph /\ k e. NN ) -> ( ( j e. NN |-> ( S.1 ` ( x e. RR |-> if ( x e. ( A ` j ) , ( H ` x ) , 0 ) ) ) ) ` k ) e. CC ) |
| 300 | 287 | oveq2d | |- ( j = k -> ( T x. ( S.1 ` ( x e. RR |-> if ( x e. ( A ` j ) , ( H ` x ) , 0 ) ) ) ) = ( T x. ( S.1 ` ( x e. RR |-> if ( x e. ( A ` k ) , ( H ` x ) , 0 ) ) ) ) ) |
| 301 | eqid | |- ( j e. NN |-> ( T x. ( S.1 ` ( x e. RR |-> if ( x e. ( A ` j ) , ( H ` x ) , 0 ) ) ) ) ) = ( j e. NN |-> ( T x. ( S.1 ` ( x e. RR |-> if ( x e. ( A ` j ) , ( H ` x ) , 0 ) ) ) ) ) |
|
| 302 | ovex | |- ( T x. ( S.1 ` ( x e. RR |-> if ( x e. ( A ` k ) , ( H ` x ) , 0 ) ) ) ) e. _V |
|
| 303 | 300 301 302 | fvmpt | |- ( k e. NN -> ( ( j e. NN |-> ( T x. ( S.1 ` ( x e. RR |-> if ( x e. ( A ` j ) , ( H ` x ) , 0 ) ) ) ) ) ` k ) = ( T x. ( S.1 ` ( x e. RR |-> if ( x e. ( A ` k ) , ( H ` x ) , 0 ) ) ) ) ) |
| 304 | 290 | oveq2d | |- ( k e. NN -> ( T x. ( ( j e. NN |-> ( S.1 ` ( x e. RR |-> if ( x e. ( A ` j ) , ( H ` x ) , 0 ) ) ) ) ` k ) ) = ( T x. ( S.1 ` ( x e. RR |-> if ( x e. ( A ` k ) , ( H ` x ) , 0 ) ) ) ) ) |
| 305 | 303 304 | eqtr4d | |- ( k e. NN -> ( ( j e. NN |-> ( T x. ( S.1 ` ( x e. RR |-> if ( x e. ( A ` j ) , ( H ` x ) , 0 ) ) ) ) ) ` k ) = ( T x. ( ( j e. NN |-> ( S.1 ` ( x e. RR |-> if ( x e. ( A ` j ) , ( H ` x ) , 0 ) ) ) ) ` k ) ) ) |
| 306 | 305 | adantl | |- ( ( ph /\ k e. NN ) -> ( ( j e. NN |-> ( T x. ( S.1 ` ( x e. RR |-> if ( x e. ( A ` j ) , ( H ` x ) , 0 ) ) ) ) ) ` k ) = ( T x. ( ( j e. NN |-> ( S.1 ` ( x e. RR |-> if ( x e. ( A ` j ) , ( H ` x ) , 0 ) ) ) ) ` k ) ) ) |
| 307 | 12 13 279 55 282 299 306 | climmulc2 | |- ( ph -> ( j e. NN |-> ( T x. ( S.1 ` ( x e. RR |-> if ( x e. ( A ` j ) , ( H ` x ) , 0 ) ) ) ) ) ~~> ( T x. ( S.1 ` H ) ) ) |
| 308 | icossicc | |- ( 0 [,) +oo ) C_ ( 0 [,] +oo ) |
|
| 309 | fss | |- ( ( ( F ` n ) : RR --> ( 0 [,) +oo ) /\ ( 0 [,) +oo ) C_ ( 0 [,] +oo ) ) -> ( F ` n ) : RR --> ( 0 [,] +oo ) ) |
|
| 310 | 3 308 309 | sylancl | |- ( ( ph /\ n e. NN ) -> ( F ` n ) : RR --> ( 0 [,] +oo ) ) |
| 311 | 10 | adantr | |- ( ( ph /\ n e. NN ) -> S e. RR ) |
| 312 | itg2cl | |- ( ( F ` n ) : RR --> ( 0 [,] +oo ) -> ( S.2 ` ( F ` n ) ) e. RR* ) |
|
| 313 | 310 312 | syl | |- ( ( ph /\ n e. NN ) -> ( S.2 ` ( F ` n ) ) e. RR* ) |
| 314 | 313 | fmpttd | |- ( ph -> ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) : NN --> RR* ) |
| 315 | 314 | frnd | |- ( ph -> ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) C_ RR* ) |
| 316 | fvex | |- ( S.2 ` ( F ` n ) ) e. _V |
|
| 317 | 316 | elabrex | |- ( n e. NN -> ( S.2 ` ( F ` n ) ) e. { x | E. n e. NN x = ( S.2 ` ( F ` n ) ) } ) |
| 318 | 317 | adantl | |- ( ( ph /\ n e. NN ) -> ( S.2 ` ( F ` n ) ) e. { x | E. n e. NN x = ( S.2 ` ( F ` n ) ) } ) |
| 319 | eqid | |- ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) = ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) |
|
| 320 | 319 | rnmpt | |- ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) = { x | E. n e. NN x = ( S.2 ` ( F ` n ) ) } |
| 321 | 318 320 | eleqtrrdi | |- ( ( ph /\ n e. NN ) -> ( S.2 ` ( F ` n ) ) e. ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ) |
| 322 | supxrub | |- ( ( ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) C_ RR* /\ ( S.2 ` ( F ` n ) ) e. ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ) -> ( S.2 ` ( F ` n ) ) <_ sup ( ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) , RR* , < ) ) |
|
| 323 | 315 321 322 | syl2an2r | |- ( ( ph /\ n e. NN ) -> ( S.2 ` ( F ` n ) ) <_ sup ( ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) , RR* , < ) ) |
| 324 | 323 6 | breqtrrdi | |- ( ( ph /\ n e. NN ) -> ( S.2 ` ( F ` n ) ) <_ S ) |
| 325 | itg2lecl | |- ( ( ( F ` n ) : RR --> ( 0 [,] +oo ) /\ S e. RR /\ ( S.2 ` ( F ` n ) ) <_ S ) -> ( S.2 ` ( F ` n ) ) e. RR ) |
|
| 326 | 310 311 324 325 | syl3anc | |- ( ( ph /\ n e. NN ) -> ( S.2 ` ( F ` n ) ) e. RR ) |
| 327 | 326 | fmpttd | |- ( ph -> ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) : NN --> RR ) |
| 328 | 310 | ralrimiva | |- ( ph -> A. n e. NN ( F ` n ) : RR --> ( 0 [,] +oo ) ) |
| 329 | fveq2 | |- ( n = k -> ( F ` n ) = ( F ` k ) ) |
|
| 330 | 329 | feq1d | |- ( n = k -> ( ( F ` n ) : RR --> ( 0 [,] +oo ) <-> ( F ` k ) : RR --> ( 0 [,] +oo ) ) ) |
| 331 | 330 | cbvralvw | |- ( A. n e. NN ( F ` n ) : RR --> ( 0 [,] +oo ) <-> A. k e. NN ( F ` k ) : RR --> ( 0 [,] +oo ) ) |
| 332 | 328 331 | sylib | |- ( ph -> A. k e. NN ( F ` k ) : RR --> ( 0 [,] +oo ) ) |
| 333 | peano2nn | |- ( n e. NN -> ( n + 1 ) e. NN ) |
|
| 334 | fveq2 | |- ( k = ( n + 1 ) -> ( F ` k ) = ( F ` ( n + 1 ) ) ) |
|
| 335 | 334 | feq1d | |- ( k = ( n + 1 ) -> ( ( F ` k ) : RR --> ( 0 [,] +oo ) <-> ( F ` ( n + 1 ) ) : RR --> ( 0 [,] +oo ) ) ) |
| 336 | 335 | rspccva | |- ( ( A. k e. NN ( F ` k ) : RR --> ( 0 [,] +oo ) /\ ( n + 1 ) e. NN ) -> ( F ` ( n + 1 ) ) : RR --> ( 0 [,] +oo ) ) |
| 337 | 332 333 336 | syl2an | |- ( ( ph /\ n e. NN ) -> ( F ` ( n + 1 ) ) : RR --> ( 0 [,] +oo ) ) |
| 338 | itg2le | |- ( ( ( F ` n ) : RR --> ( 0 [,] +oo ) /\ ( F ` ( n + 1 ) ) : RR --> ( 0 [,] +oo ) /\ ( F ` n ) oR <_ ( F ` ( n + 1 ) ) ) -> ( S.2 ` ( F ` n ) ) <_ ( S.2 ` ( F ` ( n + 1 ) ) ) ) |
|
| 339 | 310 337 4 338 | syl3anc | |- ( ( ph /\ n e. NN ) -> ( S.2 ` ( F ` n ) ) <_ ( S.2 ` ( F ` ( n + 1 ) ) ) ) |
| 340 | 339 | ralrimiva | |- ( ph -> A. n e. NN ( S.2 ` ( F ` n ) ) <_ ( S.2 ` ( F ` ( n + 1 ) ) ) ) |
| 341 | 2fveq3 | |- ( n = k -> ( S.2 ` ( F ` n ) ) = ( S.2 ` ( F ` k ) ) ) |
|
| 342 | fvex | |- ( S.2 ` ( F ` k ) ) e. _V |
|
| 343 | 341 319 342 | fvmpt | |- ( k e. NN -> ( ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ` k ) = ( S.2 ` ( F ` k ) ) ) |
| 344 | peano2nn | |- ( k e. NN -> ( k + 1 ) e. NN ) |
|
| 345 | 2fveq3 | |- ( n = ( k + 1 ) -> ( S.2 ` ( F ` n ) ) = ( S.2 ` ( F ` ( k + 1 ) ) ) ) |
|
| 346 | fvex | |- ( S.2 ` ( F ` ( k + 1 ) ) ) e. _V |
|
| 347 | 345 319 346 | fvmpt | |- ( ( k + 1 ) e. NN -> ( ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ` ( k + 1 ) ) = ( S.2 ` ( F ` ( k + 1 ) ) ) ) |
| 348 | 344 347 | syl | |- ( k e. NN -> ( ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ` ( k + 1 ) ) = ( S.2 ` ( F ` ( k + 1 ) ) ) ) |
| 349 | 343 348 | breq12d | |- ( k e. NN -> ( ( ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ` k ) <_ ( ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ` ( k + 1 ) ) <-> ( S.2 ` ( F ` k ) ) <_ ( S.2 ` ( F ` ( k + 1 ) ) ) ) ) |
| 350 | 349 | ralbiia | |- ( A. k e. NN ( ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ` k ) <_ ( ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ` ( k + 1 ) ) <-> A. k e. NN ( S.2 ` ( F ` k ) ) <_ ( S.2 ` ( F ` ( k + 1 ) ) ) ) |
| 351 | fvoveq1 | |- ( n = k -> ( F ` ( n + 1 ) ) = ( F ` ( k + 1 ) ) ) |
|
| 352 | 351 | fveq2d | |- ( n = k -> ( S.2 ` ( F ` ( n + 1 ) ) ) = ( S.2 ` ( F ` ( k + 1 ) ) ) ) |
| 353 | 341 352 | breq12d | |- ( n = k -> ( ( S.2 ` ( F ` n ) ) <_ ( S.2 ` ( F ` ( n + 1 ) ) ) <-> ( S.2 ` ( F ` k ) ) <_ ( S.2 ` ( F ` ( k + 1 ) ) ) ) ) |
| 354 | 353 | cbvralvw | |- ( A. n e. NN ( S.2 ` ( F ` n ) ) <_ ( S.2 ` ( F ` ( n + 1 ) ) ) <-> A. k e. NN ( S.2 ` ( F ` k ) ) <_ ( S.2 ` ( F ` ( k + 1 ) ) ) ) |
| 355 | 350 354 | bitr4i | |- ( A. k e. NN ( ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ` k ) <_ ( ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ` ( k + 1 ) ) <-> A. n e. NN ( S.2 ` ( F ` n ) ) <_ ( S.2 ` ( F ` ( n + 1 ) ) ) ) |
| 356 | 340 355 | sylibr | |- ( ph -> A. k e. NN ( ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ` k ) <_ ( ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ` ( k + 1 ) ) ) |
| 357 | 356 | r19.21bi | |- ( ( ph /\ k e. NN ) -> ( ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ` k ) <_ ( ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ` ( k + 1 ) ) ) |
| 358 | 324 | ralrimiva | |- ( ph -> A. n e. NN ( S.2 ` ( F ` n ) ) <_ S ) |
| 359 | 343 | breq1d | |- ( k e. NN -> ( ( ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ` k ) <_ x <-> ( S.2 ` ( F ` k ) ) <_ x ) ) |
| 360 | 359 | ralbiia | |- ( A. k e. NN ( ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ` k ) <_ x <-> A. k e. NN ( S.2 ` ( F ` k ) ) <_ x ) |
| 361 | 341 | breq1d | |- ( n = k -> ( ( S.2 ` ( F ` n ) ) <_ x <-> ( S.2 ` ( F ` k ) ) <_ x ) ) |
| 362 | 361 | cbvralvw | |- ( A. n e. NN ( S.2 ` ( F ` n ) ) <_ x <-> A. k e. NN ( S.2 ` ( F ` k ) ) <_ x ) |
| 363 | 360 362 | bitr4i | |- ( A. k e. NN ( ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ` k ) <_ x <-> A. n e. NN ( S.2 ` ( F ` n ) ) <_ x ) |
| 364 | breq2 | |- ( x = S -> ( ( S.2 ` ( F ` n ) ) <_ x <-> ( S.2 ` ( F ` n ) ) <_ S ) ) |
|
| 365 | 364 | ralbidv | |- ( x = S -> ( A. n e. NN ( S.2 ` ( F ` n ) ) <_ x <-> A. n e. NN ( S.2 ` ( F ` n ) ) <_ S ) ) |
| 366 | 363 365 | bitrid | |- ( x = S -> ( A. k e. NN ( ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ` k ) <_ x <-> A. n e. NN ( S.2 ` ( F ` n ) ) <_ S ) ) |
| 367 | 366 | rspcev | |- ( ( S e. RR /\ A. n e. NN ( S.2 ` ( F ` n ) ) <_ S ) -> E. x e. RR A. k e. NN ( ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ` k ) <_ x ) |
| 368 | 10 358 367 | syl2anc | |- ( ph -> E. x e. RR A. k e. NN ( ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ` k ) <_ x ) |
| 369 | 12 13 327 357 368 | climsup | |- ( ph -> ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ~~> sup ( ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) , RR , < ) ) |
| 370 | 327 | frnd | |- ( ph -> ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) C_ RR ) |
| 371 | 319 313 | dmmptd | |- ( ph -> dom ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) = NN ) |
| 372 | 242 | a1i | |- ( ph -> NN =/= (/) ) |
| 373 | 371 372 | eqnetrd | |- ( ph -> dom ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) =/= (/) ) |
| 374 | dm0rn0 | |- ( dom ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) = (/) <-> ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) = (/) ) |
|
| 375 | 374 | necon3bii | |- ( dom ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) =/= (/) <-> ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) =/= (/) ) |
| 376 | 373 375 | sylib | |- ( ph -> ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) =/= (/) ) |
| 377 | 316 319 | fnmpti | |- ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) Fn NN |
| 378 | breq1 | |- ( z = ( ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ` k ) -> ( z <_ x <-> ( ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ` k ) <_ x ) ) |
|
| 379 | 378 | ralrn | |- ( ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) Fn NN -> ( A. z e. ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) z <_ x <-> A. k e. NN ( ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ` k ) <_ x ) ) |
| 380 | 377 379 | mp1i | |- ( ph -> ( A. z e. ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) z <_ x <-> A. k e. NN ( ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ` k ) <_ x ) ) |
| 381 | 380 | rexbidv | |- ( ph -> ( E. x e. RR A. z e. ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) z <_ x <-> E. x e. RR A. k e. NN ( ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ` k ) <_ x ) ) |
| 382 | 368 381 | mpbird | |- ( ph -> E. x e. RR A. z e. ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) z <_ x ) |
| 383 | supxrre | |- ( ( ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) C_ RR /\ ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) =/= (/) /\ E. x e. RR A. z e. ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) z <_ x ) -> sup ( ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) , RR* , < ) = sup ( ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) , RR , < ) ) |
|
| 384 | 370 376 382 383 | syl3anc | |- ( ph -> sup ( ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) , RR* , < ) = sup ( ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) , RR , < ) ) |
| 385 | 6 384 | eqtr2id | |- ( ph -> sup ( ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) , RR , < ) = S ) |
| 386 | 369 385 | breqtrd | |- ( ph -> ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ~~> S ) |
| 387 | 25 | adantr | |- ( ( ph /\ j e. NN ) -> T e. RR ) |
| 388 | 96 | ffvelcdmda | |- ( ( ph /\ j e. NN ) -> ( A ` j ) e. dom vol ) |
| 389 | 278 | i1fres | |- ( ( H e. dom S.1 /\ ( A ` j ) e. dom vol ) -> ( x e. RR |-> if ( x e. ( A ` j ) , ( H ` x ) , 0 ) ) e. dom S.1 ) |
| 390 | 8 388 389 | syl2an2r | |- ( ( ph /\ j e. NN ) -> ( x e. RR |-> if ( x e. ( A ` j ) , ( H ` x ) , 0 ) ) e. dom S.1 ) |
| 391 | itg1cl | |- ( ( x e. RR |-> if ( x e. ( A ` j ) , ( H ` x ) , 0 ) ) e. dom S.1 -> ( S.1 ` ( x e. RR |-> if ( x e. ( A ` j ) , ( H ` x ) , 0 ) ) ) e. RR ) |
|
| 392 | 390 391 | syl | |- ( ( ph /\ j e. NN ) -> ( S.1 ` ( x e. RR |-> if ( x e. ( A ` j ) , ( H ` x ) , 0 ) ) ) e. RR ) |
| 393 | 387 392 | remulcld | |- ( ( ph /\ j e. NN ) -> ( T x. ( S.1 ` ( x e. RR |-> if ( x e. ( A ` j ) , ( H ` x ) , 0 ) ) ) ) e. RR ) |
| 394 | 393 | fmpttd | |- ( ph -> ( j e. NN |-> ( T x. ( S.1 ` ( x e. RR |-> if ( x e. ( A ` j ) , ( H ` x ) , 0 ) ) ) ) ) : NN --> RR ) |
| 395 | 394 | ffvelcdmda | |- ( ( ph /\ k e. NN ) -> ( ( j e. NN |-> ( T x. ( S.1 ` ( x e. RR |-> if ( x e. ( A ` j ) , ( H ` x ) , 0 ) ) ) ) ) ` k ) e. RR ) |
| 396 | 327 | ffvelcdmda | |- ( ( ph /\ k e. NN ) -> ( ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ` k ) e. RR ) |
| 397 | 329 | feq1d | |- ( n = k -> ( ( F ` n ) : RR --> ( 0 [,) +oo ) <-> ( F ` k ) : RR --> ( 0 [,) +oo ) ) ) |
| 398 | 397 | cbvralvw | |- ( A. n e. NN ( F ` n ) : RR --> ( 0 [,) +oo ) <-> A. k e. NN ( F ` k ) : RR --> ( 0 [,) +oo ) ) |
| 399 | 104 398 | sylib | |- ( ph -> A. k e. NN ( F ` k ) : RR --> ( 0 [,) +oo ) ) |
| 400 | 399 | r19.21bi | |- ( ( ph /\ k e. NN ) -> ( F ` k ) : RR --> ( 0 [,) +oo ) ) |
| 401 | fss | |- ( ( ( F ` k ) : RR --> ( 0 [,) +oo ) /\ ( 0 [,) +oo ) C_ ( 0 [,] +oo ) ) -> ( F ` k ) : RR --> ( 0 [,] +oo ) ) |
|
| 402 | 400 308 401 | sylancl | |- ( ( ph /\ k e. NN ) -> ( F ` k ) : RR --> ( 0 [,] +oo ) ) |
| 403 | 31 | a1i | |- ( ( ph /\ k e. NN ) -> RR e. _V ) |
| 404 | 25 | adantr | |- ( ( ph /\ k e. NN ) -> T e. RR ) |
| 405 | 404 | adantr | |- ( ( ( ph /\ k e. NN ) /\ x e. RR ) -> T e. RR ) |
| 406 | fvex | |- ( H ` x ) e. _V |
|
| 407 | c0ex | |- 0 e. _V |
|
| 408 | 406 407 | ifex | |- if ( x e. ( A ` k ) , ( H ` x ) , 0 ) e. _V |
| 409 | 408 | a1i | |- ( ( ( ph /\ k e. NN ) /\ x e. RR ) -> if ( x e. ( A ` k ) , ( H ` x ) , 0 ) e. _V ) |
| 410 | fconstmpt | |- ( RR X. { T } ) = ( x e. RR |-> T ) |
|
| 411 | 410 | a1i | |- ( ( ph /\ k e. NN ) -> ( RR X. { T } ) = ( x e. RR |-> T ) ) |
| 412 | eqidd | |- ( ( ph /\ k e. NN ) -> ( x e. RR |-> if ( x e. ( A ` k ) , ( H ` x ) , 0 ) ) = ( x e. RR |-> if ( x e. ( A ` k ) , ( H ` x ) , 0 ) ) ) |
|
| 413 | 403 405 409 411 412 | offval2 | |- ( ( ph /\ k e. NN ) -> ( ( RR X. { T } ) oF x. ( x e. RR |-> if ( x e. ( A ` k ) , ( H ` x ) , 0 ) ) ) = ( x e. RR |-> ( T x. if ( x e. ( A ` k ) , ( H ` x ) , 0 ) ) ) ) |
| 414 | ovif2 | |- ( T x. if ( x e. ( A ` k ) , ( H ` x ) , 0 ) ) = if ( x e. ( A ` k ) , ( T x. ( H ` x ) ) , ( T x. 0 ) ) |
|
| 415 | 55 | adantr | |- ( ( ph /\ k e. NN ) -> T e. CC ) |
| 416 | 415 | mul01d | |- ( ( ph /\ k e. NN ) -> ( T x. 0 ) = 0 ) |
| 417 | 416 | ifeq2d | |- ( ( ph /\ k e. NN ) -> if ( x e. ( A ` k ) , ( T x. ( H ` x ) ) , ( T x. 0 ) ) = if ( x e. ( A ` k ) , ( T x. ( H ` x ) ) , 0 ) ) |
| 418 | 414 417 | eqtrid | |- ( ( ph /\ k e. NN ) -> ( T x. if ( x e. ( A ` k ) , ( H ` x ) , 0 ) ) = if ( x e. ( A ` k ) , ( T x. ( H ` x ) ) , 0 ) ) |
| 419 | 418 | mpteq2dv | |- ( ( ph /\ k e. NN ) -> ( x e. RR |-> ( T x. if ( x e. ( A ` k ) , ( H ` x ) , 0 ) ) ) = ( x e. RR |-> if ( x e. ( A ` k ) , ( T x. ( H ` x ) ) , 0 ) ) ) |
| 420 | 413 419 | eqtrd | |- ( ( ph /\ k e. NN ) -> ( ( RR X. { T } ) oF x. ( x e. RR |-> if ( x e. ( A ` k ) , ( H ` x ) , 0 ) ) ) = ( x e. RR |-> if ( x e. ( A ` k ) , ( T x. ( H ` x ) ) , 0 ) ) ) |
| 421 | 295 404 | i1fmulc | |- ( ( ph /\ k e. NN ) -> ( ( RR X. { T } ) oF x. ( x e. RR |-> if ( x e. ( A ` k ) , ( H ` x ) , 0 ) ) ) e. dom S.1 ) |
| 422 | 420 421 | eqeltrrd | |- ( ( ph /\ k e. NN ) -> ( x e. RR |-> if ( x e. ( A ` k ) , ( T x. ( H ` x ) ) , 0 ) ) e. dom S.1 ) |
| 423 | iftrue | |- ( x e. ( A ` k ) -> if ( x e. ( A ` k ) , ( T x. ( H ` x ) ) , 0 ) = ( T x. ( H ` x ) ) ) |
|
| 424 | 423 | adantl | |- ( ( ( ( ph /\ k e. NN ) /\ x e. RR ) /\ x e. ( A ` k ) ) -> if ( x e. ( A ` k ) , ( T x. ( H ` x ) ) , 0 ) = ( T x. ( H ` x ) ) ) |
| 425 | 329 | fveq1d | |- ( n = k -> ( ( F ` n ) ` x ) = ( ( F ` k ) ` x ) ) |
| 426 | 425 | breq2d | |- ( n = k -> ( ( T x. ( H ` x ) ) <_ ( ( F ` n ) ` x ) <-> ( T x. ( H ` x ) ) <_ ( ( F ` k ) ` x ) ) ) |
| 427 | 426 | rabbidv | |- ( n = k -> { x e. RR | ( T x. ( H ` x ) ) <_ ( ( F ` n ) ` x ) } = { x e. RR | ( T x. ( H ` x ) ) <_ ( ( F ` k ) ` x ) } ) |
| 428 | 31 | rabex | |- { x e. RR | ( T x. ( H ` x ) ) <_ ( ( F ` k ) ` x ) } e. _V |
| 429 | 427 11 428 | fvmpt | |- ( k e. NN -> ( A ` k ) = { x e. RR | ( T x. ( H ` x ) ) <_ ( ( F ` k ) ` x ) } ) |
| 430 | 429 | ad2antlr | |- ( ( ( ph /\ k e. NN ) /\ x e. RR ) -> ( A ` k ) = { x e. RR | ( T x. ( H ` x ) ) <_ ( ( F ` k ) ` x ) } ) |
| 431 | 430 | eleq2d | |- ( ( ( ph /\ k e. NN ) /\ x e. RR ) -> ( x e. ( A ` k ) <-> x e. { x e. RR | ( T x. ( H ` x ) ) <_ ( ( F ` k ) ` x ) } ) ) |
| 432 | 431 | biimpa | |- ( ( ( ( ph /\ k e. NN ) /\ x e. RR ) /\ x e. ( A ` k ) ) -> x e. { x e. RR | ( T x. ( H ` x ) ) <_ ( ( F ` k ) ` x ) } ) |
| 433 | rabid | |- ( x e. { x e. RR | ( T x. ( H ` x ) ) <_ ( ( F ` k ) ` x ) } <-> ( x e. RR /\ ( T x. ( H ` x ) ) <_ ( ( F ` k ) ` x ) ) ) |
|
| 434 | 433 | simprbi | |- ( x e. { x e. RR | ( T x. ( H ` x ) ) <_ ( ( F ` k ) ` x ) } -> ( T x. ( H ` x ) ) <_ ( ( F ` k ) ` x ) ) |
| 435 | 432 434 | syl | |- ( ( ( ( ph /\ k e. NN ) /\ x e. RR ) /\ x e. ( A ` k ) ) -> ( T x. ( H ` x ) ) <_ ( ( F ` k ) ` x ) ) |
| 436 | 424 435 | eqbrtrd | |- ( ( ( ( ph /\ k e. NN ) /\ x e. RR ) /\ x e. ( A ` k ) ) -> if ( x e. ( A ` k ) , ( T x. ( H ` x ) ) , 0 ) <_ ( ( F ` k ) ` x ) ) |
| 437 | iffalse | |- ( -. x e. ( A ` k ) -> if ( x e. ( A ` k ) , ( T x. ( H ` x ) ) , 0 ) = 0 ) |
|
| 438 | 437 | adantl | |- ( ( ( ( ph /\ k e. NN ) /\ x e. RR ) /\ -. x e. ( A ` k ) ) -> if ( x e. ( A ` k ) , ( T x. ( H ` x ) ) , 0 ) = 0 ) |
| 439 | 400 | ffvelcdmda | |- ( ( ( ph /\ k e. NN ) /\ x e. RR ) -> ( ( F ` k ) ` x ) e. ( 0 [,) +oo ) ) |
| 440 | elrege0 | |- ( ( ( F ` k ) ` x ) e. ( 0 [,) +oo ) <-> ( ( ( F ` k ) ` x ) e. RR /\ 0 <_ ( ( F ` k ) ` x ) ) ) |
|
| 441 | 440 | simprbi | |- ( ( ( F ` k ) ` x ) e. ( 0 [,) +oo ) -> 0 <_ ( ( F ` k ) ` x ) ) |
| 442 | 439 441 | syl | |- ( ( ( ph /\ k e. NN ) /\ x e. RR ) -> 0 <_ ( ( F ` k ) ` x ) ) |
| 443 | 442 | adantr | |- ( ( ( ( ph /\ k e. NN ) /\ x e. RR ) /\ -. x e. ( A ` k ) ) -> 0 <_ ( ( F ` k ) ` x ) ) |
| 444 | 438 443 | eqbrtrd | |- ( ( ( ( ph /\ k e. NN ) /\ x e. RR ) /\ -. x e. ( A ` k ) ) -> if ( x e. ( A ` k ) , ( T x. ( H ` x ) ) , 0 ) <_ ( ( F ` k ) ` x ) ) |
| 445 | 436 444 | pm2.61dan | |- ( ( ( ph /\ k e. NN ) /\ x e. RR ) -> if ( x e. ( A ` k ) , ( T x. ( H ` x ) ) , 0 ) <_ ( ( F ` k ) ` x ) ) |
| 446 | 445 | ralrimiva | |- ( ( ph /\ k e. NN ) -> A. x e. RR if ( x e. ( A ` k ) , ( T x. ( H ` x ) ) , 0 ) <_ ( ( F ` k ) ` x ) ) |
| 447 | ovex | |- ( T x. ( H ` x ) ) e. _V |
|
| 448 | 447 407 | ifex | |- if ( x e. ( A ` k ) , ( T x. ( H ` x ) ) , 0 ) e. _V |
| 449 | 448 | a1i | |- ( ( ( ph /\ k e. NN ) /\ x e. RR ) -> if ( x e. ( A ` k ) , ( T x. ( H ` x ) ) , 0 ) e. _V ) |
| 450 | fvexd | |- ( ( ( ph /\ k e. NN ) /\ x e. RR ) -> ( ( F ` k ) ` x ) e. _V ) |
|
| 451 | eqidd | |- ( ( ph /\ k e. NN ) -> ( x e. RR |-> if ( x e. ( A ` k ) , ( T x. ( H ` x ) ) , 0 ) ) = ( x e. RR |-> if ( x e. ( A ` k ) , ( T x. ( H ` x ) ) , 0 ) ) ) |
|
| 452 | 400 | feqmptd | |- ( ( ph /\ k e. NN ) -> ( F ` k ) = ( x e. RR |-> ( ( F ` k ) ` x ) ) ) |
| 453 | 403 449 450 451 452 | ofrfval2 | |- ( ( ph /\ k e. NN ) -> ( ( x e. RR |-> if ( x e. ( A ` k ) , ( T x. ( H ` x ) ) , 0 ) ) oR <_ ( F ` k ) <-> A. x e. RR if ( x e. ( A ` k ) , ( T x. ( H ` x ) ) , 0 ) <_ ( ( F ` k ) ` x ) ) ) |
| 454 | 446 453 | mpbird | |- ( ( ph /\ k e. NN ) -> ( x e. RR |-> if ( x e. ( A ` k ) , ( T x. ( H ` x ) ) , 0 ) ) oR <_ ( F ` k ) ) |
| 455 | itg2ub | |- ( ( ( F ` k ) : RR --> ( 0 [,] +oo ) /\ ( x e. RR |-> if ( x e. ( A ` k ) , ( T x. ( H ` x ) ) , 0 ) ) e. dom S.1 /\ ( x e. RR |-> if ( x e. ( A ` k ) , ( T x. ( H ` x ) ) , 0 ) ) oR <_ ( F ` k ) ) -> ( S.1 ` ( x e. RR |-> if ( x e. ( A ` k ) , ( T x. ( H ` x ) ) , 0 ) ) ) <_ ( S.2 ` ( F ` k ) ) ) |
|
| 456 | 402 422 454 455 | syl3anc | |- ( ( ph /\ k e. NN ) -> ( S.1 ` ( x e. RR |-> if ( x e. ( A ` k ) , ( T x. ( H ` x ) ) , 0 ) ) ) <_ ( S.2 ` ( F ` k ) ) ) |
| 457 | 303 | adantl | |- ( ( ph /\ k e. NN ) -> ( ( j e. NN |-> ( T x. ( S.1 ` ( x e. RR |-> if ( x e. ( A ` j ) , ( H ` x ) , 0 ) ) ) ) ) ` k ) = ( T x. ( S.1 ` ( x e. RR |-> if ( x e. ( A ` k ) , ( H ` x ) , 0 ) ) ) ) ) |
| 458 | 295 404 | itg1mulc | |- ( ( ph /\ k e. NN ) -> ( S.1 ` ( ( RR X. { T } ) oF x. ( x e. RR |-> if ( x e. ( A ` k ) , ( H ` x ) , 0 ) ) ) ) = ( T x. ( S.1 ` ( x e. RR |-> if ( x e. ( A ` k ) , ( H ` x ) , 0 ) ) ) ) ) |
| 459 | 420 | fveq2d | |- ( ( ph /\ k e. NN ) -> ( S.1 ` ( ( RR X. { T } ) oF x. ( x e. RR |-> if ( x e. ( A ` k ) , ( H ` x ) , 0 ) ) ) ) = ( S.1 ` ( x e. RR |-> if ( x e. ( A ` k ) , ( T x. ( H ` x ) ) , 0 ) ) ) ) |
| 460 | 457 458 459 | 3eqtr2d | |- ( ( ph /\ k e. NN ) -> ( ( j e. NN |-> ( T x. ( S.1 ` ( x e. RR |-> if ( x e. ( A ` j ) , ( H ` x ) , 0 ) ) ) ) ) ` k ) = ( S.1 ` ( x e. RR |-> if ( x e. ( A ` k ) , ( T x. ( H ` x ) ) , 0 ) ) ) ) |
| 461 | 343 | adantl | |- ( ( ph /\ k e. NN ) -> ( ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ` k ) = ( S.2 ` ( F ` k ) ) ) |
| 462 | 456 460 461 | 3brtr4d | |- ( ( ph /\ k e. NN ) -> ( ( j e. NN |-> ( T x. ( S.1 ` ( x e. RR |-> if ( x e. ( A ` j ) , ( H ` x ) , 0 ) ) ) ) ) ` k ) <_ ( ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ` k ) ) |
| 463 | 12 13 307 386 395 396 462 | climle | |- ( ph -> ( T x. ( S.1 ` H ) ) <_ S ) |