This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The integral of a nonnegative real function F is an upper bound on the integrals of all simple functions G dominated by F . (Contributed by Mario Carneiro, 28-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | itg2ub | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐺 ∈ dom ∫1 ∧ 𝐺 ∘r ≤ 𝐹 ) → ( ∫1 ‘ 𝐺 ) ≤ ( ∫2 ‘ 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) } = { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) } | |
| 2 | 1 | itg2lcl | ⊢ { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) } ⊆ ℝ* |
| 3 | 1 | itg2lr | ⊢ ( ( 𝐺 ∈ dom ∫1 ∧ 𝐺 ∘r ≤ 𝐹 ) → ( ∫1 ‘ 𝐺 ) ∈ { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) } ) |
| 4 | 3 | 3adant1 | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐺 ∈ dom ∫1 ∧ 𝐺 ∘r ≤ 𝐹 ) → ( ∫1 ‘ 𝐺 ) ∈ { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) } ) |
| 5 | supxrub | ⊢ ( ( { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) } ⊆ ℝ* ∧ ( ∫1 ‘ 𝐺 ) ∈ { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) } ) → ( ∫1 ‘ 𝐺 ) ≤ sup ( { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) } , ℝ* , < ) ) | |
| 6 | 2 4 5 | sylancr | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐺 ∈ dom ∫1 ∧ 𝐺 ∘r ≤ 𝐹 ) → ( ∫1 ‘ 𝐺 ) ≤ sup ( { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) } , ℝ* , < ) ) |
| 7 | 1 | itg2val | ⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → ( ∫2 ‘ 𝐹 ) = sup ( { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) } , ℝ* , < ) ) |
| 8 | 7 | 3ad2ant1 | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐺 ∈ dom ∫1 ∧ 𝐺 ∘r ≤ 𝐹 ) → ( ∫2 ‘ 𝐹 ) = sup ( { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) } , ℝ* , < ) ) |
| 9 | 6 8 | breqtrrd | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝐺 ∈ dom ∫1 ∧ 𝐺 ∘r ≤ 𝐹 ) → ( ∫1 ‘ 𝐺 ) ≤ ( ∫2 ‘ 𝐹 ) ) |