This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The complement of a measurable set is measurable. (Contributed by Mario Carneiro, 18-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cmmbl | ⊢ ( 𝐴 ∈ dom vol → ( ℝ ∖ 𝐴 ) ∈ dom vol ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difssd | ⊢ ( 𝐴 ∈ dom vol → ( ℝ ∖ 𝐴 ) ⊆ ℝ ) | |
| 2 | elpwi | ⊢ ( 𝑥 ∈ 𝒫 ℝ → 𝑥 ⊆ ℝ ) | |
| 3 | inss1 | ⊢ ( 𝑥 ∩ 𝐴 ) ⊆ 𝑥 | |
| 4 | ovolsscl | ⊢ ( ( ( 𝑥 ∩ 𝐴 ) ⊆ 𝑥 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( vol* ‘ ( 𝑥 ∩ 𝐴 ) ) ∈ ℝ ) | |
| 5 | 3 4 | mp3an1 | ⊢ ( ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( vol* ‘ ( 𝑥 ∩ 𝐴 ) ) ∈ ℝ ) |
| 6 | 5 | 3adant1 | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( vol* ‘ ( 𝑥 ∩ 𝐴 ) ) ∈ ℝ ) |
| 7 | 6 | recnd | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( vol* ‘ ( 𝑥 ∩ 𝐴 ) ) ∈ ℂ ) |
| 8 | difss | ⊢ ( 𝑥 ∖ 𝐴 ) ⊆ 𝑥 | |
| 9 | ovolsscl | ⊢ ( ( ( 𝑥 ∖ 𝐴 ) ⊆ 𝑥 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ∈ ℝ ) | |
| 10 | 8 9 | mp3an1 | ⊢ ( ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ∈ ℝ ) |
| 11 | 10 | 3adant1 | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ∈ ℝ ) |
| 12 | 11 | recnd | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ∈ ℂ ) |
| 13 | 7 12 | addcomd | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( ( vol* ‘ ( 𝑥 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ) = ( ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) + ( vol* ‘ ( 𝑥 ∩ 𝐴 ) ) ) ) |
| 14 | mblsplit | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( vol* ‘ 𝑥 ) = ( ( vol* ‘ ( 𝑥 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ) ) | |
| 15 | indifcom | ⊢ ( ℝ ∩ ( 𝑥 ∖ 𝐴 ) ) = ( 𝑥 ∩ ( ℝ ∖ 𝐴 ) ) | |
| 16 | simp2 | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → 𝑥 ⊆ ℝ ) | |
| 17 | 16 | ssdifssd | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( 𝑥 ∖ 𝐴 ) ⊆ ℝ ) |
| 18 | sseqin2 | ⊢ ( ( 𝑥 ∖ 𝐴 ) ⊆ ℝ ↔ ( ℝ ∩ ( 𝑥 ∖ 𝐴 ) ) = ( 𝑥 ∖ 𝐴 ) ) | |
| 19 | 17 18 | sylib | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( ℝ ∩ ( 𝑥 ∖ 𝐴 ) ) = ( 𝑥 ∖ 𝐴 ) ) |
| 20 | 15 19 | eqtr3id | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( 𝑥 ∩ ( ℝ ∖ 𝐴 ) ) = ( 𝑥 ∖ 𝐴 ) ) |
| 21 | 20 | fveq2d | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( vol* ‘ ( 𝑥 ∩ ( ℝ ∖ 𝐴 ) ) ) = ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ) |
| 22 | difin | ⊢ ( 𝑥 ∖ ( 𝑥 ∩ ( ℝ ∖ 𝐴 ) ) ) = ( 𝑥 ∖ ( ℝ ∖ 𝐴 ) ) | |
| 23 | 20 | difeq2d | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( 𝑥 ∖ ( 𝑥 ∩ ( ℝ ∖ 𝐴 ) ) ) = ( 𝑥 ∖ ( 𝑥 ∖ 𝐴 ) ) ) |
| 24 | 22 23 | eqtr3id | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( 𝑥 ∖ ( ℝ ∖ 𝐴 ) ) = ( 𝑥 ∖ ( 𝑥 ∖ 𝐴 ) ) ) |
| 25 | dfin4 | ⊢ ( 𝑥 ∩ 𝐴 ) = ( 𝑥 ∖ ( 𝑥 ∖ 𝐴 ) ) | |
| 26 | 24 25 | eqtr4di | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( 𝑥 ∖ ( ℝ ∖ 𝐴 ) ) = ( 𝑥 ∩ 𝐴 ) ) |
| 27 | 26 | fveq2d | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( vol* ‘ ( 𝑥 ∖ ( ℝ ∖ 𝐴 ) ) ) = ( vol* ‘ ( 𝑥 ∩ 𝐴 ) ) ) |
| 28 | 21 27 | oveq12d | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( ( vol* ‘ ( 𝑥 ∩ ( ℝ ∖ 𝐴 ) ) ) + ( vol* ‘ ( 𝑥 ∖ ( ℝ ∖ 𝐴 ) ) ) ) = ( ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) + ( vol* ‘ ( 𝑥 ∩ 𝐴 ) ) ) ) |
| 29 | 13 14 28 | 3eqtr4d | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( vol* ‘ 𝑥 ) = ( ( vol* ‘ ( 𝑥 ∩ ( ℝ ∖ 𝐴 ) ) ) + ( vol* ‘ ( 𝑥 ∖ ( ℝ ∖ 𝐴 ) ) ) ) ) |
| 30 | 29 | 3expia | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝑥 ⊆ ℝ ) → ( ( vol* ‘ 𝑥 ) ∈ ℝ → ( vol* ‘ 𝑥 ) = ( ( vol* ‘ ( 𝑥 ∩ ( ℝ ∖ 𝐴 ) ) ) + ( vol* ‘ ( 𝑥 ∖ ( ℝ ∖ 𝐴 ) ) ) ) ) ) |
| 31 | 2 30 | sylan2 | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝑥 ∈ 𝒫 ℝ ) → ( ( vol* ‘ 𝑥 ) ∈ ℝ → ( vol* ‘ 𝑥 ) = ( ( vol* ‘ ( 𝑥 ∩ ( ℝ ∖ 𝐴 ) ) ) + ( vol* ‘ ( 𝑥 ∖ ( ℝ ∖ 𝐴 ) ) ) ) ) ) |
| 32 | 31 | ralrimiva | ⊢ ( 𝐴 ∈ dom vol → ∀ 𝑥 ∈ 𝒫 ℝ ( ( vol* ‘ 𝑥 ) ∈ ℝ → ( vol* ‘ 𝑥 ) = ( ( vol* ‘ ( 𝑥 ∩ ( ℝ ∖ 𝐴 ) ) ) + ( vol* ‘ ( 𝑥 ∖ ( ℝ ∖ 𝐴 ) ) ) ) ) ) |
| 33 | ismbl | ⊢ ( ( ℝ ∖ 𝐴 ) ∈ dom vol ↔ ( ( ℝ ∖ 𝐴 ) ⊆ ℝ ∧ ∀ 𝑥 ∈ 𝒫 ℝ ( ( vol* ‘ 𝑥 ) ∈ ℝ → ( vol* ‘ 𝑥 ) = ( ( vol* ‘ ( 𝑥 ∩ ( ℝ ∖ 𝐴 ) ) ) + ( vol* ‘ ( 𝑥 ∖ ( ℝ ∖ 𝐴 ) ) ) ) ) ) ) | |
| 34 | 1 32 33 | sylanbrc | ⊢ ( 𝐴 ∈ dom vol → ( ℝ ∖ 𝐴 ) ∈ dom vol ) |