This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduction from transitivity of biconditional. Useful for converting conditional definitions in a formula. (Contributed by NM, 18-Oct-1995)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 3bitr4d.1 | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) | |
| 3bitr4d.2 | ⊢ ( 𝜑 → ( 𝜃 ↔ 𝜓 ) ) | ||
| 3bitr4d.3 | ⊢ ( 𝜑 → ( 𝜏 ↔ 𝜒 ) ) | ||
| Assertion | 3bitr4d | ⊢ ( 𝜑 → ( 𝜃 ↔ 𝜏 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr4d.1 | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) | |
| 2 | 3bitr4d.2 | ⊢ ( 𝜑 → ( 𝜃 ↔ 𝜓 ) ) | |
| 3 | 3bitr4d.3 | ⊢ ( 𝜑 → ( 𝜏 ↔ 𝜒 ) ) | |
| 4 | 1 3 | bitr4d | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝜏 ) ) |
| 5 | 2 4 | bitrd | ⊢ ( 𝜑 → ( 𝜃 ↔ 𝜏 ) ) |