This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in an open interval of extended reals. (Contributed by NM, 6-Feb-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elioo2 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ↔ ( 𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iooval2 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 (,) 𝐵 ) = { 𝑥 ∈ ℝ ∣ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) } ) | |
| 2 | 1 | eleq2d | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ↔ 𝐶 ∈ { 𝑥 ∈ ℝ ∣ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) } ) ) |
| 3 | breq2 | ⊢ ( 𝑥 = 𝐶 → ( 𝐴 < 𝑥 ↔ 𝐴 < 𝐶 ) ) | |
| 4 | breq1 | ⊢ ( 𝑥 = 𝐶 → ( 𝑥 < 𝐵 ↔ 𝐶 < 𝐵 ) ) | |
| 5 | 3 4 | anbi12d | ⊢ ( 𝑥 = 𝐶 → ( ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ↔ ( 𝐴 < 𝐶 ∧ 𝐶 < 𝐵 ) ) ) |
| 6 | 5 | elrab | ⊢ ( 𝐶 ∈ { 𝑥 ∈ ℝ ∣ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) } ↔ ( 𝐶 ∈ ℝ ∧ ( 𝐴 < 𝐶 ∧ 𝐶 < 𝐵 ) ) ) |
| 7 | 3anass | ⊢ ( ( 𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵 ) ↔ ( 𝐶 ∈ ℝ ∧ ( 𝐴 < 𝐶 ∧ 𝐶 < 𝐵 ) ) ) | |
| 8 | 6 7 | bitr4i | ⊢ ( 𝐶 ∈ { 𝑥 ∈ ℝ ∣ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) } ↔ ( 𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵 ) ) |
| 9 | 2 8 | bitrdi | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ↔ ( 𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵 ) ) ) |