This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Taylor series for -u log ( 1 - A ) . (Contributed by Mario Carneiro, 1-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | logtayl | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> seq 1 ( + , ( k e. NN |-> ( ( A ^ k ) / k ) ) ) ~~> -u ( log ` ( 1 - A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0uz | |- NN0 = ( ZZ>= ` 0 ) |
|
| 2 | 0zd | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> 0 e. ZZ ) |
|
| 3 | eqeq1 | |- ( k = n -> ( k = 0 <-> n = 0 ) ) |
|
| 4 | oveq2 | |- ( k = n -> ( 1 / k ) = ( 1 / n ) ) |
|
| 5 | 3 4 | ifbieq2d | |- ( k = n -> if ( k = 0 , 0 , ( 1 / k ) ) = if ( n = 0 , 0 , ( 1 / n ) ) ) |
| 6 | oveq2 | |- ( k = n -> ( A ^ k ) = ( A ^ n ) ) |
|
| 7 | 5 6 | oveq12d | |- ( k = n -> ( if ( k = 0 , 0 , ( 1 / k ) ) x. ( A ^ k ) ) = ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( A ^ n ) ) ) |
| 8 | eqid | |- ( k e. NN0 |-> ( if ( k = 0 , 0 , ( 1 / k ) ) x. ( A ^ k ) ) ) = ( k e. NN0 |-> ( if ( k = 0 , 0 , ( 1 / k ) ) x. ( A ^ k ) ) ) |
|
| 9 | ovex | |- ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( A ^ n ) ) e. _V |
|
| 10 | 7 8 9 | fvmpt | |- ( n e. NN0 -> ( ( k e. NN0 |-> ( if ( k = 0 , 0 , ( 1 / k ) ) x. ( A ^ k ) ) ) ` n ) = ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( A ^ n ) ) ) |
| 11 | 10 | adantl | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN0 ) -> ( ( k e. NN0 |-> ( if ( k = 0 , 0 , ( 1 / k ) ) x. ( A ^ k ) ) ) ` n ) = ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( A ^ n ) ) ) |
| 12 | 0cnd | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN0 ) /\ n = 0 ) -> 0 e. CC ) |
|
| 13 | simpr | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN0 ) -> n e. NN0 ) |
|
| 14 | elnn0 | |- ( n e. NN0 <-> ( n e. NN \/ n = 0 ) ) |
|
| 15 | 13 14 | sylib | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN0 ) -> ( n e. NN \/ n = 0 ) ) |
| 16 | 15 | ord | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN0 ) -> ( -. n e. NN -> n = 0 ) ) |
| 17 | 16 | con1d | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN0 ) -> ( -. n = 0 -> n e. NN ) ) |
| 18 | 17 | imp | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN0 ) /\ -. n = 0 ) -> n e. NN ) |
| 19 | 18 | nnrecred | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN0 ) /\ -. n = 0 ) -> ( 1 / n ) e. RR ) |
| 20 | 19 | recnd | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN0 ) /\ -. n = 0 ) -> ( 1 / n ) e. CC ) |
| 21 | 12 20 | ifclda | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN0 ) -> if ( n = 0 , 0 , ( 1 / n ) ) e. CC ) |
| 22 | expcl | |- ( ( A e. CC /\ n e. NN0 ) -> ( A ^ n ) e. CC ) |
|
| 23 | 22 | adantlr | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN0 ) -> ( A ^ n ) e. CC ) |
| 24 | 21 23 | mulcld | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN0 ) -> ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( A ^ n ) ) e. CC ) |
| 25 | logtayllem | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> seq 0 ( + , ( k e. NN0 |-> ( if ( k = 0 , 0 , ( 1 / k ) ) x. ( A ^ k ) ) ) ) e. dom ~~> ) |
|
| 26 | 1 2 11 24 25 | isumclim2 | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> seq 0 ( + , ( k e. NN0 |-> ( if ( k = 0 , 0 , ( 1 / k ) ) x. ( A ^ k ) ) ) ) ~~> sum_ n e. NN0 ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( A ^ n ) ) ) |
| 27 | simpl | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> A e. CC ) |
|
| 28 | 0cn | |- 0 e. CC |
|
| 29 | eqid | |- ( abs o. - ) = ( abs o. - ) |
|
| 30 | 29 | cnmetdval | |- ( ( A e. CC /\ 0 e. CC ) -> ( A ( abs o. - ) 0 ) = ( abs ` ( A - 0 ) ) ) |
| 31 | 27 28 30 | sylancl | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( A ( abs o. - ) 0 ) = ( abs ` ( A - 0 ) ) ) |
| 32 | subid1 | |- ( A e. CC -> ( A - 0 ) = A ) |
|
| 33 | 32 | adantr | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( A - 0 ) = A ) |
| 34 | 33 | fveq2d | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( abs ` ( A - 0 ) ) = ( abs ` A ) ) |
| 35 | 31 34 | eqtrd | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( A ( abs o. - ) 0 ) = ( abs ` A ) ) |
| 36 | simpr | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( abs ` A ) < 1 ) |
|
| 37 | 35 36 | eqbrtrd | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( A ( abs o. - ) 0 ) < 1 ) |
| 38 | cnxmet | |- ( abs o. - ) e. ( *Met ` CC ) |
|
| 39 | 1xr | |- 1 e. RR* |
|
| 40 | elbl3 | |- ( ( ( ( abs o. - ) e. ( *Met ` CC ) /\ 1 e. RR* ) /\ ( 0 e. CC /\ A e. CC ) ) -> ( A e. ( 0 ( ball ` ( abs o. - ) ) 1 ) <-> ( A ( abs o. - ) 0 ) < 1 ) ) |
|
| 41 | 38 39 40 | mpanl12 | |- ( ( 0 e. CC /\ A e. CC ) -> ( A e. ( 0 ( ball ` ( abs o. - ) ) 1 ) <-> ( A ( abs o. - ) 0 ) < 1 ) ) |
| 42 | 28 27 41 | sylancr | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( A e. ( 0 ( ball ` ( abs o. - ) ) 1 ) <-> ( A ( abs o. - ) 0 ) < 1 ) ) |
| 43 | 37 42 | mpbird | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> A e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) |
| 44 | tru | |- T. |
|
| 45 | eqid | |- ( 0 ( ball ` ( abs o. - ) ) 1 ) = ( 0 ( ball ` ( abs o. - ) ) 1 ) |
|
| 46 | 0cnd | |- ( T. -> 0 e. CC ) |
|
| 47 | 39 | a1i | |- ( T. -> 1 e. RR* ) |
| 48 | ax-1cn | |- 1 e. CC |
|
| 49 | blssm | |- ( ( ( abs o. - ) e. ( *Met ` CC ) /\ 0 e. CC /\ 1 e. RR* ) -> ( 0 ( ball ` ( abs o. - ) ) 1 ) C_ CC ) |
|
| 50 | 38 28 39 49 | mp3an | |- ( 0 ( ball ` ( abs o. - ) ) 1 ) C_ CC |
| 51 | 50 | sseli | |- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> y e. CC ) |
| 52 | subcl | |- ( ( 1 e. CC /\ y e. CC ) -> ( 1 - y ) e. CC ) |
|
| 53 | 48 51 52 | sylancr | |- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> ( 1 - y ) e. CC ) |
| 54 | 51 | abscld | |- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> ( abs ` y ) e. RR ) |
| 55 | 29 | cnmetdval | |- ( ( y e. CC /\ 0 e. CC ) -> ( y ( abs o. - ) 0 ) = ( abs ` ( y - 0 ) ) ) |
| 56 | 51 28 55 | sylancl | |- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> ( y ( abs o. - ) 0 ) = ( abs ` ( y - 0 ) ) ) |
| 57 | 51 | subid1d | |- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> ( y - 0 ) = y ) |
| 58 | 57 | fveq2d | |- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> ( abs ` ( y - 0 ) ) = ( abs ` y ) ) |
| 59 | 56 58 | eqtrd | |- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> ( y ( abs o. - ) 0 ) = ( abs ` y ) ) |
| 60 | elbl3 | |- ( ( ( ( abs o. - ) e. ( *Met ` CC ) /\ 1 e. RR* ) /\ ( 0 e. CC /\ y e. CC ) ) -> ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) <-> ( y ( abs o. - ) 0 ) < 1 ) ) |
|
| 61 | 38 39 60 | mpanl12 | |- ( ( 0 e. CC /\ y e. CC ) -> ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) <-> ( y ( abs o. - ) 0 ) < 1 ) ) |
| 62 | 28 51 61 | sylancr | |- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) <-> ( y ( abs o. - ) 0 ) < 1 ) ) |
| 63 | 62 | ibi | |- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> ( y ( abs o. - ) 0 ) < 1 ) |
| 64 | 59 63 | eqbrtrrd | |- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> ( abs ` y ) < 1 ) |
| 65 | 54 64 | gtned | |- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> 1 =/= ( abs ` y ) ) |
| 66 | abs1 | |- ( abs ` 1 ) = 1 |
|
| 67 | fveq2 | |- ( 1 = y -> ( abs ` 1 ) = ( abs ` y ) ) |
|
| 68 | 66 67 | eqtr3id | |- ( 1 = y -> 1 = ( abs ` y ) ) |
| 69 | 68 | necon3i | |- ( 1 =/= ( abs ` y ) -> 1 =/= y ) |
| 70 | 65 69 | syl | |- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> 1 =/= y ) |
| 71 | subeq0 | |- ( ( 1 e. CC /\ y e. CC ) -> ( ( 1 - y ) = 0 <-> 1 = y ) ) |
|
| 72 | 71 | necon3bid | |- ( ( 1 e. CC /\ y e. CC ) -> ( ( 1 - y ) =/= 0 <-> 1 =/= y ) ) |
| 73 | 48 51 72 | sylancr | |- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> ( ( 1 - y ) =/= 0 <-> 1 =/= y ) ) |
| 74 | 70 73 | mpbird | |- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> ( 1 - y ) =/= 0 ) |
| 75 | 53 74 | logcld | |- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> ( log ` ( 1 - y ) ) e. CC ) |
| 76 | 75 | negcld | |- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> -u ( log ` ( 1 - y ) ) e. CC ) |
| 77 | 76 | adantl | |- ( ( T. /\ y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) -> -u ( log ` ( 1 - y ) ) e. CC ) |
| 78 | 77 | fmpttd | |- ( T. -> ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) |-> -u ( log ` ( 1 - y ) ) ) : ( 0 ( ball ` ( abs o. - ) ) 1 ) --> CC ) |
| 79 | 51 | absge0d | |- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> 0 <_ ( abs ` y ) ) |
| 80 | 54 | rexrd | |- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> ( abs ` y ) e. RR* ) |
| 81 | peano2re | |- ( ( abs ` y ) e. RR -> ( ( abs ` y ) + 1 ) e. RR ) |
|
| 82 | 54 81 | syl | |- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> ( ( abs ` y ) + 1 ) e. RR ) |
| 83 | 82 | rehalfcld | |- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> ( ( ( abs ` y ) + 1 ) / 2 ) e. RR ) |
| 84 | 83 | rexrd | |- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> ( ( ( abs ` y ) + 1 ) / 2 ) e. RR* ) |
| 85 | iccssxr | |- ( 0 [,] +oo ) C_ RR* |
|
| 86 | eqeq1 | |- ( m = j -> ( m = 0 <-> j = 0 ) ) |
|
| 87 | oveq2 | |- ( m = j -> ( 1 / m ) = ( 1 / j ) ) |
|
| 88 | 86 87 | ifbieq2d | |- ( m = j -> if ( m = 0 , 0 , ( 1 / m ) ) = if ( j = 0 , 0 , ( 1 / j ) ) ) |
| 89 | eqid | |- ( m e. NN0 |-> if ( m = 0 , 0 , ( 1 / m ) ) ) = ( m e. NN0 |-> if ( m = 0 , 0 , ( 1 / m ) ) ) |
|
| 90 | c0ex | |- 0 e. _V |
|
| 91 | ovex | |- ( 1 / j ) e. _V |
|
| 92 | 90 91 | ifex | |- if ( j = 0 , 0 , ( 1 / j ) ) e. _V |
| 93 | 88 89 92 | fvmpt | |- ( j e. NN0 -> ( ( m e. NN0 |-> if ( m = 0 , 0 , ( 1 / m ) ) ) ` j ) = if ( j = 0 , 0 , ( 1 / j ) ) ) |
| 94 | 93 | eqcomd | |- ( j e. NN0 -> if ( j = 0 , 0 , ( 1 / j ) ) = ( ( m e. NN0 |-> if ( m = 0 , 0 , ( 1 / m ) ) ) ` j ) ) |
| 95 | 94 | oveq1d | |- ( j e. NN0 -> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( x ^ j ) ) = ( ( ( m e. NN0 |-> if ( m = 0 , 0 , ( 1 / m ) ) ) ` j ) x. ( x ^ j ) ) ) |
| 96 | 95 | mpteq2ia | |- ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( x ^ j ) ) ) = ( j e. NN0 |-> ( ( ( m e. NN0 |-> if ( m = 0 , 0 , ( 1 / m ) ) ) ` j ) x. ( x ^ j ) ) ) |
| 97 | 96 | mpteq2i | |- ( x e. CC |-> ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( x ^ j ) ) ) ) = ( x e. CC |-> ( j e. NN0 |-> ( ( ( m e. NN0 |-> if ( m = 0 , 0 , ( 1 / m ) ) ) ` j ) x. ( x ^ j ) ) ) ) |
| 98 | 0cnd | |- ( ( ( T. /\ m e. NN0 ) /\ m = 0 ) -> 0 e. CC ) |
|
| 99 | nn0cn | |- ( m e. NN0 -> m e. CC ) |
|
| 100 | 99 | adantl | |- ( ( T. /\ m e. NN0 ) -> m e. CC ) |
| 101 | neqne | |- ( -. m = 0 -> m =/= 0 ) |
|
| 102 | reccl | |- ( ( m e. CC /\ m =/= 0 ) -> ( 1 / m ) e. CC ) |
|
| 103 | 100 101 102 | syl2an | |- ( ( ( T. /\ m e. NN0 ) /\ -. m = 0 ) -> ( 1 / m ) e. CC ) |
| 104 | 98 103 | ifclda | |- ( ( T. /\ m e. NN0 ) -> if ( m = 0 , 0 , ( 1 / m ) ) e. CC ) |
| 105 | 104 | fmpttd | |- ( T. -> ( m e. NN0 |-> if ( m = 0 , 0 , ( 1 / m ) ) ) : NN0 --> CC ) |
| 106 | recn | |- ( r e. RR -> r e. CC ) |
|
| 107 | oveq1 | |- ( x = r -> ( x ^ j ) = ( r ^ j ) ) |
|
| 108 | 107 | oveq2d | |- ( x = r -> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( x ^ j ) ) = ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) |
| 109 | 108 | mpteq2dv | |- ( x = r -> ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( x ^ j ) ) ) = ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) |
| 110 | eqid | |- ( x e. CC |-> ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( x ^ j ) ) ) ) = ( x e. CC |-> ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( x ^ j ) ) ) ) |
|
| 111 | nn0ex | |- NN0 e. _V |
|
| 112 | 111 | mptex | |- ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) e. _V |
| 113 | 109 110 112 | fvmpt | |- ( r e. CC -> ( ( x e. CC |-> ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( x ^ j ) ) ) ) ` r ) = ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) |
| 114 | 106 113 | syl | |- ( r e. RR -> ( ( x e. CC |-> ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( x ^ j ) ) ) ) ` r ) = ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) |
| 115 | 114 | eqcomd | |- ( r e. RR -> ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) = ( ( x e. CC |-> ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( x ^ j ) ) ) ) ` r ) ) |
| 116 | 115 | seqeq3d | |- ( r e. RR -> seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) = seq 0 ( + , ( ( x e. CC |-> ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( x ^ j ) ) ) ) ` r ) ) ) |
| 117 | 116 | eleq1d | |- ( r e. RR -> ( seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) e. dom ~~> <-> seq 0 ( + , ( ( x e. CC |-> ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( x ^ j ) ) ) ) ` r ) ) e. dom ~~> ) ) |
| 118 | 117 | rabbiia | |- { r e. RR | seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) e. dom ~~> } = { r e. RR | seq 0 ( + , ( ( x e. CC |-> ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( x ^ j ) ) ) ) ` r ) ) e. dom ~~> } |
| 119 | 118 | supeq1i | |- sup ( { r e. RR | seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) e. dom ~~> } , RR* , < ) = sup ( { r e. RR | seq 0 ( + , ( ( x e. CC |-> ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( x ^ j ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) |
| 120 | 97 105 119 | radcnvcl | |- ( T. -> sup ( { r e. RR | seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) e. dom ~~> } , RR* , < ) e. ( 0 [,] +oo ) ) |
| 121 | 85 120 | sselid | |- ( T. -> sup ( { r e. RR | seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) e. dom ~~> } , RR* , < ) e. RR* ) |
| 122 | 44 121 | mp1i | |- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> sup ( { r e. RR | seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) e. dom ~~> } , RR* , < ) e. RR* ) |
| 123 | 1re | |- 1 e. RR |
|
| 124 | avglt1 | |- ( ( ( abs ` y ) e. RR /\ 1 e. RR ) -> ( ( abs ` y ) < 1 <-> ( abs ` y ) < ( ( ( abs ` y ) + 1 ) / 2 ) ) ) |
|
| 125 | 54 123 124 | sylancl | |- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> ( ( abs ` y ) < 1 <-> ( abs ` y ) < ( ( ( abs ` y ) + 1 ) / 2 ) ) ) |
| 126 | 64 125 | mpbid | |- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> ( abs ` y ) < ( ( ( abs ` y ) + 1 ) / 2 ) ) |
| 127 | 0red | |- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> 0 e. RR ) |
|
| 128 | 127 54 83 79 126 | lelttrd | |- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> 0 < ( ( ( abs ` y ) + 1 ) / 2 ) ) |
| 129 | 127 83 128 | ltled | |- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> 0 <_ ( ( ( abs ` y ) + 1 ) / 2 ) ) |
| 130 | 83 129 | absidd | |- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> ( abs ` ( ( ( abs ` y ) + 1 ) / 2 ) ) = ( ( ( abs ` y ) + 1 ) / 2 ) ) |
| 131 | 44 105 | mp1i | |- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> ( m e. NN0 |-> if ( m = 0 , 0 , ( 1 / m ) ) ) : NN0 --> CC ) |
| 132 | 83 | recnd | |- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> ( ( ( abs ` y ) + 1 ) / 2 ) e. CC ) |
| 133 | oveq1 | |- ( x = ( ( ( abs ` y ) + 1 ) / 2 ) -> ( x ^ j ) = ( ( ( ( abs ` y ) + 1 ) / 2 ) ^ j ) ) |
|
| 134 | 133 | oveq2d | |- ( x = ( ( ( abs ` y ) + 1 ) / 2 ) -> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( x ^ j ) ) = ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( ( ( ( abs ` y ) + 1 ) / 2 ) ^ j ) ) ) |
| 135 | 134 | mpteq2dv | |- ( x = ( ( ( abs ` y ) + 1 ) / 2 ) -> ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( x ^ j ) ) ) = ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( ( ( ( abs ` y ) + 1 ) / 2 ) ^ j ) ) ) ) |
| 136 | 111 | mptex | |- ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( ( ( ( abs ` y ) + 1 ) / 2 ) ^ j ) ) ) e. _V |
| 137 | 135 110 136 | fvmpt | |- ( ( ( ( abs ` y ) + 1 ) / 2 ) e. CC -> ( ( x e. CC |-> ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( x ^ j ) ) ) ) ` ( ( ( abs ` y ) + 1 ) / 2 ) ) = ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( ( ( ( abs ` y ) + 1 ) / 2 ) ^ j ) ) ) ) |
| 138 | 132 137 | syl | |- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> ( ( x e. CC |-> ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( x ^ j ) ) ) ) ` ( ( ( abs ` y ) + 1 ) / 2 ) ) = ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( ( ( ( abs ` y ) + 1 ) / 2 ) ^ j ) ) ) ) |
| 139 | 138 | seqeq3d | |- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> seq 0 ( + , ( ( x e. CC |-> ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( x ^ j ) ) ) ) ` ( ( ( abs ` y ) + 1 ) / 2 ) ) ) = seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( ( ( ( abs ` y ) + 1 ) / 2 ) ^ j ) ) ) ) ) |
| 140 | avglt2 | |- ( ( ( abs ` y ) e. RR /\ 1 e. RR ) -> ( ( abs ` y ) < 1 <-> ( ( ( abs ` y ) + 1 ) / 2 ) < 1 ) ) |
|
| 141 | 54 123 140 | sylancl | |- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> ( ( abs ` y ) < 1 <-> ( ( ( abs ` y ) + 1 ) / 2 ) < 1 ) ) |
| 142 | 64 141 | mpbid | |- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> ( ( ( abs ` y ) + 1 ) / 2 ) < 1 ) |
| 143 | 130 142 | eqbrtrd | |- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> ( abs ` ( ( ( abs ` y ) + 1 ) / 2 ) ) < 1 ) |
| 144 | logtayllem | |- ( ( ( ( ( abs ` y ) + 1 ) / 2 ) e. CC /\ ( abs ` ( ( ( abs ` y ) + 1 ) / 2 ) ) < 1 ) -> seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( ( ( ( abs ` y ) + 1 ) / 2 ) ^ j ) ) ) ) e. dom ~~> ) |
|
| 145 | 132 143 144 | syl2anc | |- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( ( ( ( abs ` y ) + 1 ) / 2 ) ^ j ) ) ) ) e. dom ~~> ) |
| 146 | 139 145 | eqeltrd | |- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> seq 0 ( + , ( ( x e. CC |-> ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( x ^ j ) ) ) ) ` ( ( ( abs ` y ) + 1 ) / 2 ) ) ) e. dom ~~> ) |
| 147 | 97 131 119 132 146 | radcnvle | |- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> ( abs ` ( ( ( abs ` y ) + 1 ) / 2 ) ) <_ sup ( { r e. RR | seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) e. dom ~~> } , RR* , < ) ) |
| 148 | 130 147 | eqbrtrrd | |- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> ( ( ( abs ` y ) + 1 ) / 2 ) <_ sup ( { r e. RR | seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) e. dom ~~> } , RR* , < ) ) |
| 149 | 80 84 122 126 148 | xrltletrd | |- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> ( abs ` y ) < sup ( { r e. RR | seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) e. dom ~~> } , RR* , < ) ) |
| 150 | 0re | |- 0 e. RR |
|
| 151 | elico2 | |- ( ( 0 e. RR /\ sup ( { r e. RR | seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) e. dom ~~> } , RR* , < ) e. RR* ) -> ( ( abs ` y ) e. ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) e. dom ~~> } , RR* , < ) ) <-> ( ( abs ` y ) e. RR /\ 0 <_ ( abs ` y ) /\ ( abs ` y ) < sup ( { r e. RR | seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) e. dom ~~> } , RR* , < ) ) ) ) |
|
| 152 | 150 122 151 | sylancr | |- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> ( ( abs ` y ) e. ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) e. dom ~~> } , RR* , < ) ) <-> ( ( abs ` y ) e. RR /\ 0 <_ ( abs ` y ) /\ ( abs ` y ) < sup ( { r e. RR | seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) e. dom ~~> } , RR* , < ) ) ) ) |
| 153 | 54 79 149 152 | mpbir3and | |- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> ( abs ` y ) e. ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) e. dom ~~> } , RR* , < ) ) ) |
| 154 | absf | |- abs : CC --> RR |
|
| 155 | ffn | |- ( abs : CC --> RR -> abs Fn CC ) |
|
| 156 | elpreima | |- ( abs Fn CC -> ( y e. ( `' abs " ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) e. dom ~~> } , RR* , < ) ) ) <-> ( y e. CC /\ ( abs ` y ) e. ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) e. dom ~~> } , RR* , < ) ) ) ) ) |
|
| 157 | 154 155 156 | mp2b | |- ( y e. ( `' abs " ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) e. dom ~~> } , RR* , < ) ) ) <-> ( y e. CC /\ ( abs ` y ) e. ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) e. dom ~~> } , RR* , < ) ) ) ) |
| 158 | 51 153 157 | sylanbrc | |- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> y e. ( `' abs " ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) e. dom ~~> } , RR* , < ) ) ) ) |
| 159 | cnvimass | |- ( `' abs " ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) e. dom ~~> } , RR* , < ) ) ) C_ dom abs |
|
| 160 | 154 | fdmi | |- dom abs = CC |
| 161 | 159 160 | sseqtri | |- ( `' abs " ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) e. dom ~~> } , RR* , < ) ) ) C_ CC |
| 162 | 161 | sseli | |- ( y e. ( `' abs " ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) e. dom ~~> } , RR* , < ) ) ) -> y e. CC ) |
| 163 | oveq1 | |- ( x = y -> ( x ^ j ) = ( y ^ j ) ) |
|
| 164 | 163 | oveq2d | |- ( x = y -> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( x ^ j ) ) = ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( y ^ j ) ) ) |
| 165 | 164 | mpteq2dv | |- ( x = y -> ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( x ^ j ) ) ) = ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( y ^ j ) ) ) ) |
| 166 | 111 | mptex | |- ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( y ^ j ) ) ) e. _V |
| 167 | 165 110 166 | fvmpt | |- ( y e. CC -> ( ( x e. CC |-> ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( x ^ j ) ) ) ) ` y ) = ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( y ^ j ) ) ) ) |
| 168 | 167 | adantr | |- ( ( y e. CC /\ n e. NN0 ) -> ( ( x e. CC |-> ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( x ^ j ) ) ) ) ` y ) = ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( y ^ j ) ) ) ) |
| 169 | 168 | fveq1d | |- ( ( y e. CC /\ n e. NN0 ) -> ( ( ( x e. CC |-> ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( x ^ j ) ) ) ) ` y ) ` n ) = ( ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( y ^ j ) ) ) ` n ) ) |
| 170 | eqeq1 | |- ( j = n -> ( j = 0 <-> n = 0 ) ) |
|
| 171 | oveq2 | |- ( j = n -> ( 1 / j ) = ( 1 / n ) ) |
|
| 172 | 170 171 | ifbieq2d | |- ( j = n -> if ( j = 0 , 0 , ( 1 / j ) ) = if ( n = 0 , 0 , ( 1 / n ) ) ) |
| 173 | oveq2 | |- ( j = n -> ( y ^ j ) = ( y ^ n ) ) |
|
| 174 | 172 173 | oveq12d | |- ( j = n -> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( y ^ j ) ) = ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( y ^ n ) ) ) |
| 175 | eqid | |- ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( y ^ j ) ) ) = ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( y ^ j ) ) ) |
|
| 176 | ovex | |- ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( y ^ n ) ) e. _V |
|
| 177 | 174 175 176 | fvmpt | |- ( n e. NN0 -> ( ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( y ^ j ) ) ) ` n ) = ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( y ^ n ) ) ) |
| 178 | 177 | adantl | |- ( ( y e. CC /\ n e. NN0 ) -> ( ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( y ^ j ) ) ) ` n ) = ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( y ^ n ) ) ) |
| 179 | 169 178 | eqtr2d | |- ( ( y e. CC /\ n e. NN0 ) -> ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( y ^ n ) ) = ( ( ( x e. CC |-> ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( x ^ j ) ) ) ) ` y ) ` n ) ) |
| 180 | 179 | sumeq2dv | |- ( y e. CC -> sum_ n e. NN0 ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( y ^ n ) ) = sum_ n e. NN0 ( ( ( x e. CC |-> ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( x ^ j ) ) ) ) ` y ) ` n ) ) |
| 181 | 162 180 | syl | |- ( y e. ( `' abs " ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) e. dom ~~> } , RR* , < ) ) ) -> sum_ n e. NN0 ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( y ^ n ) ) = sum_ n e. NN0 ( ( ( x e. CC |-> ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( x ^ j ) ) ) ) ` y ) ` n ) ) |
| 182 | 181 | mpteq2ia | |- ( y e. ( `' abs " ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) e. dom ~~> } , RR* , < ) ) ) |-> sum_ n e. NN0 ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( y ^ n ) ) ) = ( y e. ( `' abs " ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) e. dom ~~> } , RR* , < ) ) ) |-> sum_ n e. NN0 ( ( ( x e. CC |-> ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( x ^ j ) ) ) ) ` y ) ` n ) ) |
| 183 | eqid | |- ( `' abs " ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) e. dom ~~> } , RR* , < ) ) ) = ( `' abs " ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) e. dom ~~> } , RR* , < ) ) ) |
|
| 184 | eqid | |- if ( sup ( { r e. RR | seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) e. dom ~~> } , RR* , < ) e. RR , ( ( ( abs ` z ) + sup ( { r e. RR | seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) e. dom ~~> } , RR* , < ) ) / 2 ) , ( ( abs ` z ) + 1 ) ) = if ( sup ( { r e. RR | seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) e. dom ~~> } , RR* , < ) e. RR , ( ( ( abs ` z ) + sup ( { r e. RR | seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) e. dom ~~> } , RR* , < ) ) / 2 ) , ( ( abs ` z ) + 1 ) ) |
|
| 185 | 97 182 105 119 183 184 | psercn | |- ( T. -> ( y e. ( `' abs " ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) e. dom ~~> } , RR* , < ) ) ) |-> sum_ n e. NN0 ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( y ^ n ) ) ) e. ( ( `' abs " ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) e. dom ~~> } , RR* , < ) ) ) -cn-> CC ) ) |
| 186 | cncff | |- ( ( y e. ( `' abs " ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) e. dom ~~> } , RR* , < ) ) ) |-> sum_ n e. NN0 ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( y ^ n ) ) ) e. ( ( `' abs " ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) e. dom ~~> } , RR* , < ) ) ) -cn-> CC ) -> ( y e. ( `' abs " ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) e. dom ~~> } , RR* , < ) ) ) |-> sum_ n e. NN0 ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( y ^ n ) ) ) : ( `' abs " ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) e. dom ~~> } , RR* , < ) ) ) --> CC ) |
|
| 187 | 185 186 | syl | |- ( T. -> ( y e. ( `' abs " ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) e. dom ~~> } , RR* , < ) ) ) |-> sum_ n e. NN0 ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( y ^ n ) ) ) : ( `' abs " ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) e. dom ~~> } , RR* , < ) ) ) --> CC ) |
| 188 | 187 | fvmptelcdm | |- ( ( T. /\ y e. ( `' abs " ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) e. dom ~~> } , RR* , < ) ) ) ) -> sum_ n e. NN0 ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( y ^ n ) ) e. CC ) |
| 189 | 158 188 | sylan2 | |- ( ( T. /\ y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) -> sum_ n e. NN0 ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( y ^ n ) ) e. CC ) |
| 190 | 189 | fmpttd | |- ( T. -> ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) |-> sum_ n e. NN0 ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( y ^ n ) ) ) : ( 0 ( ball ` ( abs o. - ) ) 1 ) --> CC ) |
| 191 | cnelprrecn | |- CC e. { RR , CC } |
|
| 192 | 191 | a1i | |- ( T. -> CC e. { RR , CC } ) |
| 193 | 75 | adantl | |- ( ( T. /\ y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) -> ( log ` ( 1 - y ) ) e. CC ) |
| 194 | ovexd | |- ( ( T. /\ y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) -> ( ( 1 / ( 1 - y ) ) x. -u 1 ) e. _V ) |
|
| 195 | 29 | cnmetdval | |- ( ( 1 e. CC /\ ( 1 - y ) e. CC ) -> ( 1 ( abs o. - ) ( 1 - y ) ) = ( abs ` ( 1 - ( 1 - y ) ) ) ) |
| 196 | 48 53 195 | sylancr | |- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> ( 1 ( abs o. - ) ( 1 - y ) ) = ( abs ` ( 1 - ( 1 - y ) ) ) ) |
| 197 | nncan | |- ( ( 1 e. CC /\ y e. CC ) -> ( 1 - ( 1 - y ) ) = y ) |
|
| 198 | 48 51 197 | sylancr | |- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> ( 1 - ( 1 - y ) ) = y ) |
| 199 | 198 | fveq2d | |- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> ( abs ` ( 1 - ( 1 - y ) ) ) = ( abs ` y ) ) |
| 200 | 196 199 | eqtrd | |- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> ( 1 ( abs o. - ) ( 1 - y ) ) = ( abs ` y ) ) |
| 201 | 200 64 | eqbrtrd | |- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> ( 1 ( abs o. - ) ( 1 - y ) ) < 1 ) |
| 202 | elbl | |- ( ( ( abs o. - ) e. ( *Met ` CC ) /\ 1 e. CC /\ 1 e. RR* ) -> ( ( 1 - y ) e. ( 1 ( ball ` ( abs o. - ) ) 1 ) <-> ( ( 1 - y ) e. CC /\ ( 1 ( abs o. - ) ( 1 - y ) ) < 1 ) ) ) |
|
| 203 | 38 48 39 202 | mp3an | |- ( ( 1 - y ) e. ( 1 ( ball ` ( abs o. - ) ) 1 ) <-> ( ( 1 - y ) e. CC /\ ( 1 ( abs o. - ) ( 1 - y ) ) < 1 ) ) |
| 204 | 53 201 203 | sylanbrc | |- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> ( 1 - y ) e. ( 1 ( ball ` ( abs o. - ) ) 1 ) ) |
| 205 | 204 | adantl | |- ( ( T. /\ y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) -> ( 1 - y ) e. ( 1 ( ball ` ( abs o. - ) ) 1 ) ) |
| 206 | neg1cn | |- -u 1 e. CC |
|
| 207 | 206 | a1i | |- ( ( T. /\ y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) -> -u 1 e. CC ) |
| 208 | eqid | |- ( 1 ( ball ` ( abs o. - ) ) 1 ) = ( 1 ( ball ` ( abs o. - ) ) 1 ) |
|
| 209 | 208 | dvlog2lem | |- ( 1 ( ball ` ( abs o. - ) ) 1 ) C_ ( CC \ ( -oo (,] 0 ) ) |
| 210 | 209 | sseli | |- ( x e. ( 1 ( ball ` ( abs o. - ) ) 1 ) -> x e. ( CC \ ( -oo (,] 0 ) ) ) |
| 211 | 210 | eldifad | |- ( x e. ( 1 ( ball ` ( abs o. - ) ) 1 ) -> x e. CC ) |
| 212 | eqid | |- ( CC \ ( -oo (,] 0 ) ) = ( CC \ ( -oo (,] 0 ) ) |
|
| 213 | 212 | logdmn0 | |- ( x e. ( CC \ ( -oo (,] 0 ) ) -> x =/= 0 ) |
| 214 | 210 213 | syl | |- ( x e. ( 1 ( ball ` ( abs o. - ) ) 1 ) -> x =/= 0 ) |
| 215 | 211 214 | logcld | |- ( x e. ( 1 ( ball ` ( abs o. - ) ) 1 ) -> ( log ` x ) e. CC ) |
| 216 | 215 | adantl | |- ( ( T. /\ x e. ( 1 ( ball ` ( abs o. - ) ) 1 ) ) -> ( log ` x ) e. CC ) |
| 217 | ovexd | |- ( ( T. /\ x e. ( 1 ( ball ` ( abs o. - ) ) 1 ) ) -> ( 1 / x ) e. _V ) |
|
| 218 | simpr | |- ( ( T. /\ y e. CC ) -> y e. CC ) |
|
| 219 | 48 218 52 | sylancr | |- ( ( T. /\ y e. CC ) -> ( 1 - y ) e. CC ) |
| 220 | 206 | a1i | |- ( ( T. /\ y e. CC ) -> -u 1 e. CC ) |
| 221 | 1cnd | |- ( ( T. /\ y e. CC ) -> 1 e. CC ) |
|
| 222 | 0cnd | |- ( ( T. /\ y e. CC ) -> 0 e. CC ) |
|
| 223 | 1cnd | |- ( T. -> 1 e. CC ) |
|
| 224 | 192 223 | dvmptc | |- ( T. -> ( CC _D ( y e. CC |-> 1 ) ) = ( y e. CC |-> 0 ) ) |
| 225 | 192 | dvmptid | |- ( T. -> ( CC _D ( y e. CC |-> y ) ) = ( y e. CC |-> 1 ) ) |
| 226 | 192 221 222 224 218 221 225 | dvmptsub | |- ( T. -> ( CC _D ( y e. CC |-> ( 1 - y ) ) ) = ( y e. CC |-> ( 0 - 1 ) ) ) |
| 227 | df-neg | |- -u 1 = ( 0 - 1 ) |
|
| 228 | 227 | mpteq2i | |- ( y e. CC |-> -u 1 ) = ( y e. CC |-> ( 0 - 1 ) ) |
| 229 | 226 228 | eqtr4di | |- ( T. -> ( CC _D ( y e. CC |-> ( 1 - y ) ) ) = ( y e. CC |-> -u 1 ) ) |
| 230 | 50 | a1i | |- ( T. -> ( 0 ( ball ` ( abs o. - ) ) 1 ) C_ CC ) |
| 231 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 232 | 231 | cnfldtopon | |- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
| 233 | 232 | toponrestid | |- ( TopOpen ` CCfld ) = ( ( TopOpen ` CCfld ) |`t CC ) |
| 234 | 231 | cnfldtopn | |- ( TopOpen ` CCfld ) = ( MetOpen ` ( abs o. - ) ) |
| 235 | 234 | blopn | |- ( ( ( abs o. - ) e. ( *Met ` CC ) /\ 0 e. CC /\ 1 e. RR* ) -> ( 0 ( ball ` ( abs o. - ) ) 1 ) e. ( TopOpen ` CCfld ) ) |
| 236 | 38 28 39 235 | mp3an | |- ( 0 ( ball ` ( abs o. - ) ) 1 ) e. ( TopOpen ` CCfld ) |
| 237 | 236 | a1i | |- ( T. -> ( 0 ( ball ` ( abs o. - ) ) 1 ) e. ( TopOpen ` CCfld ) ) |
| 238 | 192 219 220 229 230 233 231 237 | dvmptres | |- ( T. -> ( CC _D ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) |-> ( 1 - y ) ) ) = ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) |-> -u 1 ) ) |
| 239 | logf1o | |- log : ( CC \ { 0 } ) -1-1-onto-> ran log |
|
| 240 | f1of | |- ( log : ( CC \ { 0 } ) -1-1-onto-> ran log -> log : ( CC \ { 0 } ) --> ran log ) |
|
| 241 | 239 240 | ax-mp | |- log : ( CC \ { 0 } ) --> ran log |
| 242 | 212 | logdmss | |- ( CC \ ( -oo (,] 0 ) ) C_ ( CC \ { 0 } ) |
| 243 | 209 242 | sstri | |- ( 1 ( ball ` ( abs o. - ) ) 1 ) C_ ( CC \ { 0 } ) |
| 244 | fssres | |- ( ( log : ( CC \ { 0 } ) --> ran log /\ ( 1 ( ball ` ( abs o. - ) ) 1 ) C_ ( CC \ { 0 } ) ) -> ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) : ( 1 ( ball ` ( abs o. - ) ) 1 ) --> ran log ) |
|
| 245 | 241 243 244 | mp2an | |- ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) : ( 1 ( ball ` ( abs o. - ) ) 1 ) --> ran log |
| 246 | 245 | a1i | |- ( T. -> ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) : ( 1 ( ball ` ( abs o. - ) ) 1 ) --> ran log ) |
| 247 | 246 | feqmptd | |- ( T. -> ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) = ( x e. ( 1 ( ball ` ( abs o. - ) ) 1 ) |-> ( ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ` x ) ) ) |
| 248 | fvres | |- ( x e. ( 1 ( ball ` ( abs o. - ) ) 1 ) -> ( ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ` x ) = ( log ` x ) ) |
|
| 249 | 248 | mpteq2ia | |- ( x e. ( 1 ( ball ` ( abs o. - ) ) 1 ) |-> ( ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ` x ) ) = ( x e. ( 1 ( ball ` ( abs o. - ) ) 1 ) |-> ( log ` x ) ) |
| 250 | 247 249 | eqtrdi | |- ( T. -> ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) = ( x e. ( 1 ( ball ` ( abs o. - ) ) 1 ) |-> ( log ` x ) ) ) |
| 251 | 250 | oveq2d | |- ( T. -> ( CC _D ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ) = ( CC _D ( x e. ( 1 ( ball ` ( abs o. - ) ) 1 ) |-> ( log ` x ) ) ) ) |
| 252 | 208 | dvlog2 | |- ( CC _D ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ) = ( x e. ( 1 ( ball ` ( abs o. - ) ) 1 ) |-> ( 1 / x ) ) |
| 253 | 251 252 | eqtr3di | |- ( T. -> ( CC _D ( x e. ( 1 ( ball ` ( abs o. - ) ) 1 ) |-> ( log ` x ) ) ) = ( x e. ( 1 ( ball ` ( abs o. - ) ) 1 ) |-> ( 1 / x ) ) ) |
| 254 | fveq2 | |- ( x = ( 1 - y ) -> ( log ` x ) = ( log ` ( 1 - y ) ) ) |
|
| 255 | oveq2 | |- ( x = ( 1 - y ) -> ( 1 / x ) = ( 1 / ( 1 - y ) ) ) |
|
| 256 | 192 192 205 207 216 217 238 253 254 255 | dvmptco | |- ( T. -> ( CC _D ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) |-> ( log ` ( 1 - y ) ) ) ) = ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) |-> ( ( 1 / ( 1 - y ) ) x. -u 1 ) ) ) |
| 257 | 192 193 194 256 | dvmptneg | |- ( T. -> ( CC _D ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) |-> -u ( log ` ( 1 - y ) ) ) ) = ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) |-> -u ( ( 1 / ( 1 - y ) ) x. -u 1 ) ) ) |
| 258 | 53 74 | reccld | |- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> ( 1 / ( 1 - y ) ) e. CC ) |
| 259 | mulcom | |- ( ( ( 1 / ( 1 - y ) ) e. CC /\ -u 1 e. CC ) -> ( ( 1 / ( 1 - y ) ) x. -u 1 ) = ( -u 1 x. ( 1 / ( 1 - y ) ) ) ) |
|
| 260 | 258 206 259 | sylancl | |- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> ( ( 1 / ( 1 - y ) ) x. -u 1 ) = ( -u 1 x. ( 1 / ( 1 - y ) ) ) ) |
| 261 | 258 | mulm1d | |- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> ( -u 1 x. ( 1 / ( 1 - y ) ) ) = -u ( 1 / ( 1 - y ) ) ) |
| 262 | 260 261 | eqtrd | |- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> ( ( 1 / ( 1 - y ) ) x. -u 1 ) = -u ( 1 / ( 1 - y ) ) ) |
| 263 | 262 | negeqd | |- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> -u ( ( 1 / ( 1 - y ) ) x. -u 1 ) = -u -u ( 1 / ( 1 - y ) ) ) |
| 264 | 258 | negnegd | |- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> -u -u ( 1 / ( 1 - y ) ) = ( 1 / ( 1 - y ) ) ) |
| 265 | 263 264 | eqtrd | |- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> -u ( ( 1 / ( 1 - y ) ) x. -u 1 ) = ( 1 / ( 1 - y ) ) ) |
| 266 | 265 | mpteq2ia | |- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) |-> -u ( ( 1 / ( 1 - y ) ) x. -u 1 ) ) = ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) |-> ( 1 / ( 1 - y ) ) ) |
| 267 | 257 266 | eqtrdi | |- ( T. -> ( CC _D ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) |-> -u ( log ` ( 1 - y ) ) ) ) = ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) |-> ( 1 / ( 1 - y ) ) ) ) |
| 268 | 267 | dmeqd | |- ( T. -> dom ( CC _D ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) |-> -u ( log ` ( 1 - y ) ) ) ) = dom ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) |-> ( 1 / ( 1 - y ) ) ) ) |
| 269 | dmmptg | |- ( A. y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ( 1 / ( 1 - y ) ) e. _V -> dom ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) |-> ( 1 / ( 1 - y ) ) ) = ( 0 ( ball ` ( abs o. - ) ) 1 ) ) |
|
| 270 | ovexd | |- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> ( 1 / ( 1 - y ) ) e. _V ) |
|
| 271 | 269 270 | mprg | |- dom ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) |-> ( 1 / ( 1 - y ) ) ) = ( 0 ( ball ` ( abs o. - ) ) 1 ) |
| 272 | 268 271 | eqtrdi | |- ( T. -> dom ( CC _D ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) |-> -u ( log ` ( 1 - y ) ) ) ) = ( 0 ( ball ` ( abs o. - ) ) 1 ) ) |
| 273 | sumex | |- sum_ n e. NN ( ( n x. ( ( m e. NN0 |-> if ( m = 0 , 0 , ( 1 / m ) ) ) ` n ) ) x. ( y ^ ( n - 1 ) ) ) e. _V |
|
| 274 | 273 | a1i | |- ( ( T. /\ y e. ( `' abs " ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) e. dom ~~> } , RR* , < ) ) ) ) -> sum_ n e. NN ( ( n x. ( ( m e. NN0 |-> if ( m = 0 , 0 , ( 1 / m ) ) ) ` n ) ) x. ( y ^ ( n - 1 ) ) ) e. _V ) |
| 275 | fveq2 | |- ( n = k -> ( ( ( x e. CC |-> ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( x ^ j ) ) ) ) ` y ) ` n ) = ( ( ( x e. CC |-> ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( x ^ j ) ) ) ) ` y ) ` k ) ) |
|
| 276 | 275 | cbvsumv | |- sum_ n e. NN0 ( ( ( x e. CC |-> ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( x ^ j ) ) ) ) ` y ) ` n ) = sum_ k e. NN0 ( ( ( x e. CC |-> ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( x ^ j ) ) ) ) ` y ) ` k ) |
| 277 | 181 276 | eqtrdi | |- ( y e. ( `' abs " ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) e. dom ~~> } , RR* , < ) ) ) -> sum_ n e. NN0 ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( y ^ n ) ) = sum_ k e. NN0 ( ( ( x e. CC |-> ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( x ^ j ) ) ) ) ` y ) ` k ) ) |
| 278 | 277 | mpteq2ia | |- ( y e. ( `' abs " ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) e. dom ~~> } , RR* , < ) ) ) |-> sum_ n e. NN0 ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( y ^ n ) ) ) = ( y e. ( `' abs " ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) e. dom ~~> } , RR* , < ) ) ) |-> sum_ k e. NN0 ( ( ( x e. CC |-> ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( x ^ j ) ) ) ) ` y ) ` k ) ) |
| 279 | eqid | |- ( 0 ( ball ` ( abs o. - ) ) ( ( ( abs ` z ) + if ( sup ( { r e. RR | seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) e. dom ~~> } , RR* , < ) e. RR , ( ( ( abs ` z ) + sup ( { r e. RR | seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) e. dom ~~> } , RR* , < ) ) / 2 ) , ( ( abs ` z ) + 1 ) ) ) / 2 ) ) = ( 0 ( ball ` ( abs o. - ) ) ( ( ( abs ` z ) + if ( sup ( { r e. RR | seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) e. dom ~~> } , RR* , < ) e. RR , ( ( ( abs ` z ) + sup ( { r e. RR | seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) e. dom ~~> } , RR* , < ) ) / 2 ) , ( ( abs ` z ) + 1 ) ) ) / 2 ) ) |
|
| 280 | 97 278 105 119 183 184 279 | pserdv2 | |- ( T. -> ( CC _D ( y e. ( `' abs " ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) e. dom ~~> } , RR* , < ) ) ) |-> sum_ n e. NN0 ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( y ^ n ) ) ) ) = ( y e. ( `' abs " ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) e. dom ~~> } , RR* , < ) ) ) |-> sum_ n e. NN ( ( n x. ( ( m e. NN0 |-> if ( m = 0 , 0 , ( 1 / m ) ) ) ` n ) ) x. ( y ^ ( n - 1 ) ) ) ) ) |
| 281 | 158 | ssriv | |- ( 0 ( ball ` ( abs o. - ) ) 1 ) C_ ( `' abs " ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) e. dom ~~> } , RR* , < ) ) ) |
| 282 | 281 | a1i | |- ( T. -> ( 0 ( ball ` ( abs o. - ) ) 1 ) C_ ( `' abs " ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( j e. NN0 |-> ( if ( j = 0 , 0 , ( 1 / j ) ) x. ( r ^ j ) ) ) ) e. dom ~~> } , RR* , < ) ) ) ) |
| 283 | 192 188 274 280 282 233 231 237 | dvmptres | |- ( T. -> ( CC _D ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) |-> sum_ n e. NN0 ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( y ^ n ) ) ) ) = ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) |-> sum_ n e. NN ( ( n x. ( ( m e. NN0 |-> if ( m = 0 , 0 , ( 1 / m ) ) ) ` n ) ) x. ( y ^ ( n - 1 ) ) ) ) ) |
| 284 | nnnn0 | |- ( n e. NN -> n e. NN0 ) |
|
| 285 | 284 | adantl | |- ( ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) /\ n e. NN ) -> n e. NN0 ) |
| 286 | eqeq1 | |- ( m = n -> ( m = 0 <-> n = 0 ) ) |
|
| 287 | oveq2 | |- ( m = n -> ( 1 / m ) = ( 1 / n ) ) |
|
| 288 | 286 287 | ifbieq2d | |- ( m = n -> if ( m = 0 , 0 , ( 1 / m ) ) = if ( n = 0 , 0 , ( 1 / n ) ) ) |
| 289 | ovex | |- ( 1 / n ) e. _V |
|
| 290 | 90 289 | ifex | |- if ( n = 0 , 0 , ( 1 / n ) ) e. _V |
| 291 | 288 89 290 | fvmpt | |- ( n e. NN0 -> ( ( m e. NN0 |-> if ( m = 0 , 0 , ( 1 / m ) ) ) ` n ) = if ( n = 0 , 0 , ( 1 / n ) ) ) |
| 292 | 285 291 | syl | |- ( ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) /\ n e. NN ) -> ( ( m e. NN0 |-> if ( m = 0 , 0 , ( 1 / m ) ) ) ` n ) = if ( n = 0 , 0 , ( 1 / n ) ) ) |
| 293 | nnne0 | |- ( n e. NN -> n =/= 0 ) |
|
| 294 | 293 | adantl | |- ( ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) /\ n e. NN ) -> n =/= 0 ) |
| 295 | 294 | neneqd | |- ( ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) /\ n e. NN ) -> -. n = 0 ) |
| 296 | 295 | iffalsed | |- ( ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) /\ n e. NN ) -> if ( n = 0 , 0 , ( 1 / n ) ) = ( 1 / n ) ) |
| 297 | 292 296 | eqtrd | |- ( ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) /\ n e. NN ) -> ( ( m e. NN0 |-> if ( m = 0 , 0 , ( 1 / m ) ) ) ` n ) = ( 1 / n ) ) |
| 298 | 297 | oveq2d | |- ( ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) /\ n e. NN ) -> ( n x. ( ( m e. NN0 |-> if ( m = 0 , 0 , ( 1 / m ) ) ) ` n ) ) = ( n x. ( 1 / n ) ) ) |
| 299 | nncn | |- ( n e. NN -> n e. CC ) |
|
| 300 | 299 | adantl | |- ( ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) /\ n e. NN ) -> n e. CC ) |
| 301 | 300 294 | recidd | |- ( ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) /\ n e. NN ) -> ( n x. ( 1 / n ) ) = 1 ) |
| 302 | 298 301 | eqtrd | |- ( ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) /\ n e. NN ) -> ( n x. ( ( m e. NN0 |-> if ( m = 0 , 0 , ( 1 / m ) ) ) ` n ) ) = 1 ) |
| 303 | 302 | oveq1d | |- ( ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) /\ n e. NN ) -> ( ( n x. ( ( m e. NN0 |-> if ( m = 0 , 0 , ( 1 / m ) ) ) ` n ) ) x. ( y ^ ( n - 1 ) ) ) = ( 1 x. ( y ^ ( n - 1 ) ) ) ) |
| 304 | nnm1nn0 | |- ( n e. NN -> ( n - 1 ) e. NN0 ) |
|
| 305 | expcl | |- ( ( y e. CC /\ ( n - 1 ) e. NN0 ) -> ( y ^ ( n - 1 ) ) e. CC ) |
|
| 306 | 51 304 305 | syl2an | |- ( ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) /\ n e. NN ) -> ( y ^ ( n - 1 ) ) e. CC ) |
| 307 | 306 | mullidd | |- ( ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) /\ n e. NN ) -> ( 1 x. ( y ^ ( n - 1 ) ) ) = ( y ^ ( n - 1 ) ) ) |
| 308 | 303 307 | eqtrd | |- ( ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) /\ n e. NN ) -> ( ( n x. ( ( m e. NN0 |-> if ( m = 0 , 0 , ( 1 / m ) ) ) ` n ) ) x. ( y ^ ( n - 1 ) ) ) = ( y ^ ( n - 1 ) ) ) |
| 309 | 308 | sumeq2dv | |- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> sum_ n e. NN ( ( n x. ( ( m e. NN0 |-> if ( m = 0 , 0 , ( 1 / m ) ) ) ` n ) ) x. ( y ^ ( n - 1 ) ) ) = sum_ n e. NN ( y ^ ( n - 1 ) ) ) |
| 310 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 311 | 1e0p1 | |- 1 = ( 0 + 1 ) |
|
| 312 | 311 | fveq2i | |- ( ZZ>= ` 1 ) = ( ZZ>= ` ( 0 + 1 ) ) |
| 313 | 310 312 | eqtri | |- NN = ( ZZ>= ` ( 0 + 1 ) ) |
| 314 | oveq1 | |- ( n = ( 1 + m ) -> ( n - 1 ) = ( ( 1 + m ) - 1 ) ) |
|
| 315 | 314 | oveq2d | |- ( n = ( 1 + m ) -> ( y ^ ( n - 1 ) ) = ( y ^ ( ( 1 + m ) - 1 ) ) ) |
| 316 | 1zzd | |- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> 1 e. ZZ ) |
|
| 317 | 0zd | |- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> 0 e. ZZ ) |
|
| 318 | 1 313 315 316 317 306 | isumshft | |- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> sum_ n e. NN ( y ^ ( n - 1 ) ) = sum_ m e. NN0 ( y ^ ( ( 1 + m ) - 1 ) ) ) |
| 319 | pncan2 | |- ( ( 1 e. CC /\ m e. CC ) -> ( ( 1 + m ) - 1 ) = m ) |
|
| 320 | 48 99 319 | sylancr | |- ( m e. NN0 -> ( ( 1 + m ) - 1 ) = m ) |
| 321 | 320 | oveq2d | |- ( m e. NN0 -> ( y ^ ( ( 1 + m ) - 1 ) ) = ( y ^ m ) ) |
| 322 | 321 | sumeq2i | |- sum_ m e. NN0 ( y ^ ( ( 1 + m ) - 1 ) ) = sum_ m e. NN0 ( y ^ m ) |
| 323 | 318 322 | eqtrdi | |- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> sum_ n e. NN ( y ^ ( n - 1 ) ) = sum_ m e. NN0 ( y ^ m ) ) |
| 324 | geoisum | |- ( ( y e. CC /\ ( abs ` y ) < 1 ) -> sum_ m e. NN0 ( y ^ m ) = ( 1 / ( 1 - y ) ) ) |
|
| 325 | 51 64 324 | syl2anc | |- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> sum_ m e. NN0 ( y ^ m ) = ( 1 / ( 1 - y ) ) ) |
| 326 | 309 323 325 | 3eqtrd | |- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> sum_ n e. NN ( ( n x. ( ( m e. NN0 |-> if ( m = 0 , 0 , ( 1 / m ) ) ) ` n ) ) x. ( y ^ ( n - 1 ) ) ) = ( 1 / ( 1 - y ) ) ) |
| 327 | 326 | mpteq2ia | |- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) |-> sum_ n e. NN ( ( n x. ( ( m e. NN0 |-> if ( m = 0 , 0 , ( 1 / m ) ) ) ` n ) ) x. ( y ^ ( n - 1 ) ) ) ) = ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) |-> ( 1 / ( 1 - y ) ) ) |
| 328 | 283 327 | eqtrdi | |- ( T. -> ( CC _D ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) |-> sum_ n e. NN0 ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( y ^ n ) ) ) ) = ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) |-> ( 1 / ( 1 - y ) ) ) ) |
| 329 | 267 328 | eqtr4d | |- ( T. -> ( CC _D ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) |-> -u ( log ` ( 1 - y ) ) ) ) = ( CC _D ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) |-> sum_ n e. NN0 ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( y ^ n ) ) ) ) ) |
| 330 | 1rp | |- 1 e. RR+ |
|
| 331 | blcntr | |- ( ( ( abs o. - ) e. ( *Met ` CC ) /\ 0 e. CC /\ 1 e. RR+ ) -> 0 e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) |
|
| 332 | 38 28 330 331 | mp3an | |- 0 e. ( 0 ( ball ` ( abs o. - ) ) 1 ) |
| 333 | 332 | a1i | |- ( T. -> 0 e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) |
| 334 | oveq2 | |- ( y = 0 -> ( 1 - y ) = ( 1 - 0 ) ) |
|
| 335 | 1m0e1 | |- ( 1 - 0 ) = 1 |
|
| 336 | 334 335 | eqtrdi | |- ( y = 0 -> ( 1 - y ) = 1 ) |
| 337 | 336 | fveq2d | |- ( y = 0 -> ( log ` ( 1 - y ) ) = ( log ` 1 ) ) |
| 338 | log1 | |- ( log ` 1 ) = 0 |
|
| 339 | 337 338 | eqtrdi | |- ( y = 0 -> ( log ` ( 1 - y ) ) = 0 ) |
| 340 | 339 | negeqd | |- ( y = 0 -> -u ( log ` ( 1 - y ) ) = -u 0 ) |
| 341 | neg0 | |- -u 0 = 0 |
|
| 342 | 340 341 | eqtrdi | |- ( y = 0 -> -u ( log ` ( 1 - y ) ) = 0 ) |
| 343 | eqid | |- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) |-> -u ( log ` ( 1 - y ) ) ) = ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) |-> -u ( log ` ( 1 - y ) ) ) |
|
| 344 | 342 343 90 | fvmpt | |- ( 0 e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> ( ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) |-> -u ( log ` ( 1 - y ) ) ) ` 0 ) = 0 ) |
| 345 | 332 344 | mp1i | |- ( T. -> ( ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) |-> -u ( log ` ( 1 - y ) ) ) ` 0 ) = 0 ) |
| 346 | oveq1 | |- ( 0 = if ( n = 0 , 0 , ( 1 / n ) ) -> ( 0 x. ( y ^ n ) ) = ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( y ^ n ) ) ) |
|
| 347 | 346 | eqeq1d | |- ( 0 = if ( n = 0 , 0 , ( 1 / n ) ) -> ( ( 0 x. ( y ^ n ) ) = 0 <-> ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( y ^ n ) ) = 0 ) ) |
| 348 | oveq1 | |- ( ( 1 / n ) = if ( n = 0 , 0 , ( 1 / n ) ) -> ( ( 1 / n ) x. ( y ^ n ) ) = ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( y ^ n ) ) ) |
|
| 349 | 348 | eqeq1d | |- ( ( 1 / n ) = if ( n = 0 , 0 , ( 1 / n ) ) -> ( ( ( 1 / n ) x. ( y ^ n ) ) = 0 <-> ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( y ^ n ) ) = 0 ) ) |
| 350 | simpll | |- ( ( ( y = 0 /\ n e. NN0 ) /\ n = 0 ) -> y = 0 ) |
|
| 351 | 350 28 | eqeltrdi | |- ( ( ( y = 0 /\ n e. NN0 ) /\ n = 0 ) -> y e. CC ) |
| 352 | simplr | |- ( ( ( y = 0 /\ n e. NN0 ) /\ n = 0 ) -> n e. NN0 ) |
|
| 353 | 351 352 | expcld | |- ( ( ( y = 0 /\ n e. NN0 ) /\ n = 0 ) -> ( y ^ n ) e. CC ) |
| 354 | 353 | mul02d | |- ( ( ( y = 0 /\ n e. NN0 ) /\ n = 0 ) -> ( 0 x. ( y ^ n ) ) = 0 ) |
| 355 | simpll | |- ( ( ( y = 0 /\ n e. NN0 ) /\ -. n = 0 ) -> y = 0 ) |
|
| 356 | 355 | oveq1d | |- ( ( ( y = 0 /\ n e. NN0 ) /\ -. n = 0 ) -> ( y ^ n ) = ( 0 ^ n ) ) |
| 357 | simpr | |- ( ( y = 0 /\ n e. NN0 ) -> n e. NN0 ) |
|
| 358 | 357 14 | sylib | |- ( ( y = 0 /\ n e. NN0 ) -> ( n e. NN \/ n = 0 ) ) |
| 359 | 358 | ord | |- ( ( y = 0 /\ n e. NN0 ) -> ( -. n e. NN -> n = 0 ) ) |
| 360 | 359 | con1d | |- ( ( y = 0 /\ n e. NN0 ) -> ( -. n = 0 -> n e. NN ) ) |
| 361 | 360 | imp | |- ( ( ( y = 0 /\ n e. NN0 ) /\ -. n = 0 ) -> n e. NN ) |
| 362 | 361 | 0expd | |- ( ( ( y = 0 /\ n e. NN0 ) /\ -. n = 0 ) -> ( 0 ^ n ) = 0 ) |
| 363 | 356 362 | eqtrd | |- ( ( ( y = 0 /\ n e. NN0 ) /\ -. n = 0 ) -> ( y ^ n ) = 0 ) |
| 364 | 363 | oveq2d | |- ( ( ( y = 0 /\ n e. NN0 ) /\ -. n = 0 ) -> ( ( 1 / n ) x. ( y ^ n ) ) = ( ( 1 / n ) x. 0 ) ) |
| 365 | 361 | nnrecred | |- ( ( ( y = 0 /\ n e. NN0 ) /\ -. n = 0 ) -> ( 1 / n ) e. RR ) |
| 366 | 365 | recnd | |- ( ( ( y = 0 /\ n e. NN0 ) /\ -. n = 0 ) -> ( 1 / n ) e. CC ) |
| 367 | 366 | mul01d | |- ( ( ( y = 0 /\ n e. NN0 ) /\ -. n = 0 ) -> ( ( 1 / n ) x. 0 ) = 0 ) |
| 368 | 364 367 | eqtrd | |- ( ( ( y = 0 /\ n e. NN0 ) /\ -. n = 0 ) -> ( ( 1 / n ) x. ( y ^ n ) ) = 0 ) |
| 369 | 347 349 354 368 | ifbothda | |- ( ( y = 0 /\ n e. NN0 ) -> ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( y ^ n ) ) = 0 ) |
| 370 | 369 | sumeq2dv | |- ( y = 0 -> sum_ n e. NN0 ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( y ^ n ) ) = sum_ n e. NN0 0 ) |
| 371 | 1 | eqimssi | |- NN0 C_ ( ZZ>= ` 0 ) |
| 372 | 371 | orci | |- ( NN0 C_ ( ZZ>= ` 0 ) \/ NN0 e. Fin ) |
| 373 | sumz | |- ( ( NN0 C_ ( ZZ>= ` 0 ) \/ NN0 e. Fin ) -> sum_ n e. NN0 0 = 0 ) |
|
| 374 | 372 373 | ax-mp | |- sum_ n e. NN0 0 = 0 |
| 375 | 370 374 | eqtrdi | |- ( y = 0 -> sum_ n e. NN0 ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( y ^ n ) ) = 0 ) |
| 376 | eqid | |- ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) |-> sum_ n e. NN0 ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( y ^ n ) ) ) = ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) |-> sum_ n e. NN0 ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( y ^ n ) ) ) |
|
| 377 | 375 376 90 | fvmpt | |- ( 0 e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> ( ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) |-> sum_ n e. NN0 ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( y ^ n ) ) ) ` 0 ) = 0 ) |
| 378 | 332 377 | mp1i | |- ( T. -> ( ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) |-> sum_ n e. NN0 ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( y ^ n ) ) ) ` 0 ) = 0 ) |
| 379 | 345 378 | eqtr4d | |- ( T. -> ( ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) |-> -u ( log ` ( 1 - y ) ) ) ` 0 ) = ( ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) |-> sum_ n e. NN0 ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( y ^ n ) ) ) ` 0 ) ) |
| 380 | 45 46 47 78 190 272 329 333 379 | dv11cn | |- ( T. -> ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) |-> -u ( log ` ( 1 - y ) ) ) = ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) |-> sum_ n e. NN0 ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( y ^ n ) ) ) ) |
| 381 | 380 | fveq1d | |- ( T. -> ( ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) |-> -u ( log ` ( 1 - y ) ) ) ` A ) = ( ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) |-> sum_ n e. NN0 ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( y ^ n ) ) ) ` A ) ) |
| 382 | 44 381 | mp1i | |- ( A e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> ( ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) |-> -u ( log ` ( 1 - y ) ) ) ` A ) = ( ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) |-> sum_ n e. NN0 ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( y ^ n ) ) ) ` A ) ) |
| 383 | oveq2 | |- ( y = A -> ( 1 - y ) = ( 1 - A ) ) |
|
| 384 | 383 | fveq2d | |- ( y = A -> ( log ` ( 1 - y ) ) = ( log ` ( 1 - A ) ) ) |
| 385 | 384 | negeqd | |- ( y = A -> -u ( log ` ( 1 - y ) ) = -u ( log ` ( 1 - A ) ) ) |
| 386 | negex | |- -u ( log ` ( 1 - A ) ) e. _V |
|
| 387 | 385 343 386 | fvmpt | |- ( A e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> ( ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) |-> -u ( log ` ( 1 - y ) ) ) ` A ) = -u ( log ` ( 1 - A ) ) ) |
| 388 | oveq1 | |- ( y = A -> ( y ^ n ) = ( A ^ n ) ) |
|
| 389 | 388 | oveq2d | |- ( y = A -> ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( y ^ n ) ) = ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( A ^ n ) ) ) |
| 390 | 389 | sumeq2sdv | |- ( y = A -> sum_ n e. NN0 ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( y ^ n ) ) = sum_ n e. NN0 ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( A ^ n ) ) ) |
| 391 | sumex | |- sum_ n e. NN0 ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( A ^ n ) ) e. _V |
|
| 392 | 390 376 391 | fvmpt | |- ( A e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> ( ( y e. ( 0 ( ball ` ( abs o. - ) ) 1 ) |-> sum_ n e. NN0 ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( y ^ n ) ) ) ` A ) = sum_ n e. NN0 ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( A ^ n ) ) ) |
| 393 | 382 387 392 | 3eqtr3d | |- ( A e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> -u ( log ` ( 1 - A ) ) = sum_ n e. NN0 ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( A ^ n ) ) ) |
| 394 | 43 393 | syl | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> -u ( log ` ( 1 - A ) ) = sum_ n e. NN0 ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( A ^ n ) ) ) |
| 395 | 26 394 | breqtrrd | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> seq 0 ( + , ( k e. NN0 |-> ( if ( k = 0 , 0 , ( 1 / k ) ) x. ( A ^ k ) ) ) ) ~~> -u ( log ` ( 1 - A ) ) ) |
| 396 | seqex | |- seq 0 ( + , ( k e. NN0 |-> ( if ( k = 0 , 0 , ( 1 / k ) ) x. ( A ^ k ) ) ) ) e. _V |
|
| 397 | 396 | a1i | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> seq 0 ( + , ( k e. NN0 |-> ( if ( k = 0 , 0 , ( 1 / k ) ) x. ( A ^ k ) ) ) ) e. _V ) |
| 398 | seqex | |- seq 1 ( + , ( k e. NN |-> ( ( A ^ k ) / k ) ) ) e. _V |
|
| 399 | 398 | a1i | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> seq 1 ( + , ( k e. NN |-> ( ( A ^ k ) / k ) ) ) e. _V ) |
| 400 | 1zzd | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> 1 e. ZZ ) |
|
| 401 | elnnuz | |- ( n e. NN <-> n e. ( ZZ>= ` 1 ) ) |
|
| 402 | fvres | |- ( n e. ( ZZ>= ` 1 ) -> ( ( seq 0 ( + , ( k e. NN0 |-> ( if ( k = 0 , 0 , ( 1 / k ) ) x. ( A ^ k ) ) ) ) |` ( ZZ>= ` 1 ) ) ` n ) = ( seq 0 ( + , ( k e. NN0 |-> ( if ( k = 0 , 0 , ( 1 / k ) ) x. ( A ^ k ) ) ) ) ` n ) ) |
|
| 403 | 401 402 | sylbi | |- ( n e. NN -> ( ( seq 0 ( + , ( k e. NN0 |-> ( if ( k = 0 , 0 , ( 1 / k ) ) x. ( A ^ k ) ) ) ) |` ( ZZ>= ` 1 ) ) ` n ) = ( seq 0 ( + , ( k e. NN0 |-> ( if ( k = 0 , 0 , ( 1 / k ) ) x. ( A ^ k ) ) ) ) ` n ) ) |
| 404 | 403 | eqcomd | |- ( n e. NN -> ( seq 0 ( + , ( k e. NN0 |-> ( if ( k = 0 , 0 , ( 1 / k ) ) x. ( A ^ k ) ) ) ) ` n ) = ( ( seq 0 ( + , ( k e. NN0 |-> ( if ( k = 0 , 0 , ( 1 / k ) ) x. ( A ^ k ) ) ) ) |` ( ZZ>= ` 1 ) ) ` n ) ) |
| 405 | addlid | |- ( n e. CC -> ( 0 + n ) = n ) |
|
| 406 | 405 | adantl | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. CC ) -> ( 0 + n ) = n ) |
| 407 | 0cnd | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> 0 e. CC ) |
|
| 408 | 1eluzge0 | |- 1 e. ( ZZ>= ` 0 ) |
|
| 409 | 408 | a1i | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> 1 e. ( ZZ>= ` 0 ) ) |
| 410 | 0cnd | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN0 ) /\ k = 0 ) -> 0 e. CC ) |
|
| 411 | nn0cn | |- ( k e. NN0 -> k e. CC ) |
|
| 412 | 411 | adantl | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN0 ) -> k e. CC ) |
| 413 | neqne | |- ( -. k = 0 -> k =/= 0 ) |
|
| 414 | reccl | |- ( ( k e. CC /\ k =/= 0 ) -> ( 1 / k ) e. CC ) |
|
| 415 | 412 413 414 | syl2an | |- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN0 ) /\ -. k = 0 ) -> ( 1 / k ) e. CC ) |
| 416 | 410 415 | ifclda | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN0 ) -> if ( k = 0 , 0 , ( 1 / k ) ) e. CC ) |
| 417 | expcl | |- ( ( A e. CC /\ k e. NN0 ) -> ( A ^ k ) e. CC ) |
|
| 418 | 417 | adantlr | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN0 ) -> ( A ^ k ) e. CC ) |
| 419 | 416 418 | mulcld | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN0 ) -> ( if ( k = 0 , 0 , ( 1 / k ) ) x. ( A ^ k ) ) e. CC ) |
| 420 | 419 | fmpttd | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( k e. NN0 |-> ( if ( k = 0 , 0 , ( 1 / k ) ) x. ( A ^ k ) ) ) : NN0 --> CC ) |
| 421 | 1nn0 | |- 1 e. NN0 |
|
| 422 | ffvelcdm | |- ( ( ( k e. NN0 |-> ( if ( k = 0 , 0 , ( 1 / k ) ) x. ( A ^ k ) ) ) : NN0 --> CC /\ 1 e. NN0 ) -> ( ( k e. NN0 |-> ( if ( k = 0 , 0 , ( 1 / k ) ) x. ( A ^ k ) ) ) ` 1 ) e. CC ) |
|
| 423 | 420 421 422 | sylancl | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( ( k e. NN0 |-> ( if ( k = 0 , 0 , ( 1 / k ) ) x. ( A ^ k ) ) ) ` 1 ) e. CC ) |
| 424 | elfz1eq | |- ( n e. ( 0 ... 0 ) -> n = 0 ) |
|
| 425 | 1m1e0 | |- ( 1 - 1 ) = 0 |
|
| 426 | 425 | oveq2i | |- ( 0 ... ( 1 - 1 ) ) = ( 0 ... 0 ) |
| 427 | 424 426 | eleq2s | |- ( n e. ( 0 ... ( 1 - 1 ) ) -> n = 0 ) |
| 428 | 427 | fveq2d | |- ( n e. ( 0 ... ( 1 - 1 ) ) -> ( ( k e. NN0 |-> ( if ( k = 0 , 0 , ( 1 / k ) ) x. ( A ^ k ) ) ) ` n ) = ( ( k e. NN0 |-> ( if ( k = 0 , 0 , ( 1 / k ) ) x. ( A ^ k ) ) ) ` 0 ) ) |
| 429 | 0nn0 | |- 0 e. NN0 |
|
| 430 | iftrue | |- ( k = 0 -> if ( k = 0 , 0 , ( 1 / k ) ) = 0 ) |
|
| 431 | oveq2 | |- ( k = 0 -> ( A ^ k ) = ( A ^ 0 ) ) |
|
| 432 | 430 431 | oveq12d | |- ( k = 0 -> ( if ( k = 0 , 0 , ( 1 / k ) ) x. ( A ^ k ) ) = ( 0 x. ( A ^ 0 ) ) ) |
| 433 | ovex | |- ( 0 x. ( A ^ 0 ) ) e. _V |
|
| 434 | 432 8 433 | fvmpt | |- ( 0 e. NN0 -> ( ( k e. NN0 |-> ( if ( k = 0 , 0 , ( 1 / k ) ) x. ( A ^ k ) ) ) ` 0 ) = ( 0 x. ( A ^ 0 ) ) ) |
| 435 | 429 434 | ax-mp | |- ( ( k e. NN0 |-> ( if ( k = 0 , 0 , ( 1 / k ) ) x. ( A ^ k ) ) ) ` 0 ) = ( 0 x. ( A ^ 0 ) ) |
| 436 | expcl | |- ( ( A e. CC /\ 0 e. NN0 ) -> ( A ^ 0 ) e. CC ) |
|
| 437 | 27 429 436 | sylancl | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( A ^ 0 ) e. CC ) |
| 438 | 437 | mul02d | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( 0 x. ( A ^ 0 ) ) = 0 ) |
| 439 | 435 438 | eqtrid | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( ( k e. NN0 |-> ( if ( k = 0 , 0 , ( 1 / k ) ) x. ( A ^ k ) ) ) ` 0 ) = 0 ) |
| 440 | 428 439 | sylan9eqr | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. ( 0 ... ( 1 - 1 ) ) ) -> ( ( k e. NN0 |-> ( if ( k = 0 , 0 , ( 1 / k ) ) x. ( A ^ k ) ) ) ` n ) = 0 ) |
| 441 | 406 407 409 423 440 | seqid | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( seq 0 ( + , ( k e. NN0 |-> ( if ( k = 0 , 0 , ( 1 / k ) ) x. ( A ^ k ) ) ) ) |` ( ZZ>= ` 1 ) ) = seq 1 ( + , ( k e. NN0 |-> ( if ( k = 0 , 0 , ( 1 / k ) ) x. ( A ^ k ) ) ) ) ) |
| 442 | 293 | adantl | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) -> n =/= 0 ) |
| 443 | 442 | neneqd | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) -> -. n = 0 ) |
| 444 | 443 | iffalsed | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) -> if ( n = 0 , 0 , ( 1 / n ) ) = ( 1 / n ) ) |
| 445 | 444 | oveq1d | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) -> ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( A ^ n ) ) = ( ( 1 / n ) x. ( A ^ n ) ) ) |
| 446 | 284 23 | sylan2 | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) -> ( A ^ n ) e. CC ) |
| 447 | 299 | adantl | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) -> n e. CC ) |
| 448 | 446 447 442 | divrec2d | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) -> ( ( A ^ n ) / n ) = ( ( 1 / n ) x. ( A ^ n ) ) ) |
| 449 | 445 448 | eqtr4d | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) -> ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( A ^ n ) ) = ( ( A ^ n ) / n ) ) |
| 450 | 284 11 | sylan2 | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) -> ( ( k e. NN0 |-> ( if ( k = 0 , 0 , ( 1 / k ) ) x. ( A ^ k ) ) ) ` n ) = ( if ( n = 0 , 0 , ( 1 / n ) ) x. ( A ^ n ) ) ) |
| 451 | id | |- ( k = n -> k = n ) |
|
| 452 | 6 451 | oveq12d | |- ( k = n -> ( ( A ^ k ) / k ) = ( ( A ^ n ) / n ) ) |
| 453 | eqid | |- ( k e. NN |-> ( ( A ^ k ) / k ) ) = ( k e. NN |-> ( ( A ^ k ) / k ) ) |
|
| 454 | ovex | |- ( ( A ^ n ) / n ) e. _V |
|
| 455 | 452 453 454 | fvmpt | |- ( n e. NN -> ( ( k e. NN |-> ( ( A ^ k ) / k ) ) ` n ) = ( ( A ^ n ) / n ) ) |
| 456 | 455 | adantl | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) -> ( ( k e. NN |-> ( ( A ^ k ) / k ) ) ` n ) = ( ( A ^ n ) / n ) ) |
| 457 | 449 450 456 | 3eqtr4d | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) -> ( ( k e. NN0 |-> ( if ( k = 0 , 0 , ( 1 / k ) ) x. ( A ^ k ) ) ) ` n ) = ( ( k e. NN |-> ( ( A ^ k ) / k ) ) ` n ) ) |
| 458 | 401 457 | sylan2br | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. ( ZZ>= ` 1 ) ) -> ( ( k e. NN0 |-> ( if ( k = 0 , 0 , ( 1 / k ) ) x. ( A ^ k ) ) ) ` n ) = ( ( k e. NN |-> ( ( A ^ k ) / k ) ) ` n ) ) |
| 459 | 400 458 | seqfeq | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> seq 1 ( + , ( k e. NN0 |-> ( if ( k = 0 , 0 , ( 1 / k ) ) x. ( A ^ k ) ) ) ) = seq 1 ( + , ( k e. NN |-> ( ( A ^ k ) / k ) ) ) ) |
| 460 | 441 459 | eqtrd | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( seq 0 ( + , ( k e. NN0 |-> ( if ( k = 0 , 0 , ( 1 / k ) ) x. ( A ^ k ) ) ) ) |` ( ZZ>= ` 1 ) ) = seq 1 ( + , ( k e. NN |-> ( ( A ^ k ) / k ) ) ) ) |
| 461 | 460 | fveq1d | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( ( seq 0 ( + , ( k e. NN0 |-> ( if ( k = 0 , 0 , ( 1 / k ) ) x. ( A ^ k ) ) ) ) |` ( ZZ>= ` 1 ) ) ` n ) = ( seq 1 ( + , ( k e. NN |-> ( ( A ^ k ) / k ) ) ) ` n ) ) |
| 462 | 404 461 | sylan9eqr | |- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN ) -> ( seq 0 ( + , ( k e. NN0 |-> ( if ( k = 0 , 0 , ( 1 / k ) ) x. ( A ^ k ) ) ) ) ` n ) = ( seq 1 ( + , ( k e. NN |-> ( ( A ^ k ) / k ) ) ) ` n ) ) |
| 463 | 310 397 399 400 462 | climeq | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( seq 0 ( + , ( k e. NN0 |-> ( if ( k = 0 , 0 , ( 1 / k ) ) x. ( A ^ k ) ) ) ) ~~> -u ( log ` ( 1 - A ) ) <-> seq 1 ( + , ( k e. NN |-> ( ( A ^ k ) / k ) ) ) ~~> -u ( log ` ( 1 - A ) ) ) ) |
| 464 | 395 463 | mpbid | |- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> seq 1 ( + , ( k e. NN |-> ( ( A ^ k ) / k ) ) ) ~~> -u ( log ` ( 1 - A ) ) ) |