This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Function-builder for derivative, chain rule. (Contributed by Mario Carneiro, 1-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvmptco.s | |- ( ph -> S e. { RR , CC } ) |
|
| dvmptco.t | |- ( ph -> T e. { RR , CC } ) |
||
| dvmptco.a | |- ( ( ph /\ x e. X ) -> A e. Y ) |
||
| dvmptco.b | |- ( ( ph /\ x e. X ) -> B e. V ) |
||
| dvmptco.c | |- ( ( ph /\ y e. Y ) -> C e. CC ) |
||
| dvmptco.d | |- ( ( ph /\ y e. Y ) -> D e. W ) |
||
| dvmptco.da | |- ( ph -> ( S _D ( x e. X |-> A ) ) = ( x e. X |-> B ) ) |
||
| dvmptco.dc | |- ( ph -> ( T _D ( y e. Y |-> C ) ) = ( y e. Y |-> D ) ) |
||
| dvmptco.e | |- ( y = A -> C = E ) |
||
| dvmptco.f | |- ( y = A -> D = F ) |
||
| Assertion | dvmptco | |- ( ph -> ( S _D ( x e. X |-> E ) ) = ( x e. X |-> ( F x. B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvmptco.s | |- ( ph -> S e. { RR , CC } ) |
|
| 2 | dvmptco.t | |- ( ph -> T e. { RR , CC } ) |
|
| 3 | dvmptco.a | |- ( ( ph /\ x e. X ) -> A e. Y ) |
|
| 4 | dvmptco.b | |- ( ( ph /\ x e. X ) -> B e. V ) |
|
| 5 | dvmptco.c | |- ( ( ph /\ y e. Y ) -> C e. CC ) |
|
| 6 | dvmptco.d | |- ( ( ph /\ y e. Y ) -> D e. W ) |
|
| 7 | dvmptco.da | |- ( ph -> ( S _D ( x e. X |-> A ) ) = ( x e. X |-> B ) ) |
|
| 8 | dvmptco.dc | |- ( ph -> ( T _D ( y e. Y |-> C ) ) = ( y e. Y |-> D ) ) |
|
| 9 | dvmptco.e | |- ( y = A -> C = E ) |
|
| 10 | dvmptco.f | |- ( y = A -> D = F ) |
|
| 11 | 5 | fmpttd | |- ( ph -> ( y e. Y |-> C ) : Y --> CC ) |
| 12 | 3 | fmpttd | |- ( ph -> ( x e. X |-> A ) : X --> Y ) |
| 13 | 8 | dmeqd | |- ( ph -> dom ( T _D ( y e. Y |-> C ) ) = dom ( y e. Y |-> D ) ) |
| 14 | 6 | ralrimiva | |- ( ph -> A. y e. Y D e. W ) |
| 15 | dmmptg | |- ( A. y e. Y D e. W -> dom ( y e. Y |-> D ) = Y ) |
|
| 16 | 14 15 | syl | |- ( ph -> dom ( y e. Y |-> D ) = Y ) |
| 17 | 13 16 | eqtrd | |- ( ph -> dom ( T _D ( y e. Y |-> C ) ) = Y ) |
| 18 | 7 | dmeqd | |- ( ph -> dom ( S _D ( x e. X |-> A ) ) = dom ( x e. X |-> B ) ) |
| 19 | 4 | ralrimiva | |- ( ph -> A. x e. X B e. V ) |
| 20 | dmmptg | |- ( A. x e. X B e. V -> dom ( x e. X |-> B ) = X ) |
|
| 21 | 19 20 | syl | |- ( ph -> dom ( x e. X |-> B ) = X ) |
| 22 | 18 21 | eqtrd | |- ( ph -> dom ( S _D ( x e. X |-> A ) ) = X ) |
| 23 | 2 1 11 12 17 22 | dvcof | |- ( ph -> ( S _D ( ( y e. Y |-> C ) o. ( x e. X |-> A ) ) ) = ( ( ( T _D ( y e. Y |-> C ) ) o. ( x e. X |-> A ) ) oF x. ( S _D ( x e. X |-> A ) ) ) ) |
| 24 | eqidd | |- ( ph -> ( x e. X |-> A ) = ( x e. X |-> A ) ) |
|
| 25 | eqidd | |- ( ph -> ( y e. Y |-> C ) = ( y e. Y |-> C ) ) |
|
| 26 | 3 24 25 9 | fmptco | |- ( ph -> ( ( y e. Y |-> C ) o. ( x e. X |-> A ) ) = ( x e. X |-> E ) ) |
| 27 | 26 | oveq2d | |- ( ph -> ( S _D ( ( y e. Y |-> C ) o. ( x e. X |-> A ) ) ) = ( S _D ( x e. X |-> E ) ) ) |
| 28 | ovex | |- ( S _D ( x e. X |-> A ) ) e. _V |
|
| 29 | 28 | dmex | |- dom ( S _D ( x e. X |-> A ) ) e. _V |
| 30 | 22 29 | eqeltrrdi | |- ( ph -> X e. _V ) |
| 31 | 2 5 6 8 | dvmptcl | |- ( ( ph /\ y e. Y ) -> D e. CC ) |
| 32 | 8 31 | fmpt3d | |- ( ph -> ( T _D ( y e. Y |-> C ) ) : Y --> CC ) |
| 33 | fco | |- ( ( ( T _D ( y e. Y |-> C ) ) : Y --> CC /\ ( x e. X |-> A ) : X --> Y ) -> ( ( T _D ( y e. Y |-> C ) ) o. ( x e. X |-> A ) ) : X --> CC ) |
|
| 34 | 32 12 33 | syl2anc | |- ( ph -> ( ( T _D ( y e. Y |-> C ) ) o. ( x e. X |-> A ) ) : X --> CC ) |
| 35 | 3 24 8 10 | fmptco | |- ( ph -> ( ( T _D ( y e. Y |-> C ) ) o. ( x e. X |-> A ) ) = ( x e. X |-> F ) ) |
| 36 | 35 | feq1d | |- ( ph -> ( ( ( T _D ( y e. Y |-> C ) ) o. ( x e. X |-> A ) ) : X --> CC <-> ( x e. X |-> F ) : X --> CC ) ) |
| 37 | 34 36 | mpbid | |- ( ph -> ( x e. X |-> F ) : X --> CC ) |
| 38 | 37 | fvmptelcdm | |- ( ( ph /\ x e. X ) -> F e. CC ) |
| 39 | 30 38 4 35 7 | offval2 | |- ( ph -> ( ( ( T _D ( y e. Y |-> C ) ) o. ( x e. X |-> A ) ) oF x. ( S _D ( x e. X |-> A ) ) ) = ( x e. X |-> ( F x. B ) ) ) |
| 40 | 23 27 39 | 3eqtr3d | |- ( ph -> ( S _D ( x e. X |-> E ) ) = ( x e. X |-> ( F x. B ) ) ) |