This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two functions that are eventually equal to one another have the same limit. (Contributed by Mario Carneiro, 5-Nov-2013) (Revised by Mario Carneiro, 31-Jan-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | climeq.1 | |- Z = ( ZZ>= ` M ) |
|
| climeq.2 | |- ( ph -> F e. V ) |
||
| climeq.3 | |- ( ph -> G e. W ) |
||
| climeq.5 | |- ( ph -> M e. ZZ ) |
||
| climeq.6 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) = ( G ` k ) ) |
||
| Assertion | climeq | |- ( ph -> ( F ~~> A <-> G ~~> A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climeq.1 | |- Z = ( ZZ>= ` M ) |
|
| 2 | climeq.2 | |- ( ph -> F e. V ) |
|
| 3 | climeq.3 | |- ( ph -> G e. W ) |
|
| 4 | climeq.5 | |- ( ph -> M e. ZZ ) |
|
| 5 | climeq.6 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) = ( G ` k ) ) |
|
| 6 | 1 4 2 5 | clim2 | |- ( ph -> ( F ~~> A <-> ( A e. CC /\ A. x e. RR+ E. y e. Z A. k e. ( ZZ>= ` y ) ( ( G ` k ) e. CC /\ ( abs ` ( ( G ` k ) - A ) ) < x ) ) ) ) |
| 7 | eqidd | |- ( ( ph /\ k e. Z ) -> ( G ` k ) = ( G ` k ) ) |
|
| 8 | 1 4 3 7 | clim2 | |- ( ph -> ( G ~~> A <-> ( A e. CC /\ A. x e. RR+ E. y e. Z A. k e. ( ZZ>= ` y ) ( ( G ` k ) e. CC /\ ( abs ` ( ( G ` k ) - A ) ) < x ) ) ) ) |
| 9 | 6 8 | bitr4d | |- ( ph -> ( F ~~> A <-> G ~~> A ) ) |