This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality of sequences. (Contributed by Mario Carneiro, 13-Jul-2013) (Revised by Mario Carneiro, 27-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | seqfeq.1 | |- ( ph -> M e. ZZ ) |
|
| seqfeq.2 | |- ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( F ` k ) = ( G ` k ) ) |
||
| Assertion | seqfeq | |- ( ph -> seq M ( .+ , F ) = seq M ( .+ , G ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqfeq.1 | |- ( ph -> M e. ZZ ) |
|
| 2 | seqfeq.2 | |- ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( F ` k ) = ( G ` k ) ) |
|
| 3 | seqfn | |- ( M e. ZZ -> seq M ( .+ , F ) Fn ( ZZ>= ` M ) ) |
|
| 4 | 1 3 | syl | |- ( ph -> seq M ( .+ , F ) Fn ( ZZ>= ` M ) ) |
| 5 | seqfn | |- ( M e. ZZ -> seq M ( .+ , G ) Fn ( ZZ>= ` M ) ) |
|
| 6 | 1 5 | syl | |- ( ph -> seq M ( .+ , G ) Fn ( ZZ>= ` M ) ) |
| 7 | simpr | |- ( ( ph /\ x e. ( ZZ>= ` M ) ) -> x e. ( ZZ>= ` M ) ) |
|
| 8 | elfzuz | |- ( k e. ( M ... x ) -> k e. ( ZZ>= ` M ) ) |
|
| 9 | 8 2 | sylan2 | |- ( ( ph /\ k e. ( M ... x ) ) -> ( F ` k ) = ( G ` k ) ) |
| 10 | 9 | adantlr | |- ( ( ( ph /\ x e. ( ZZ>= ` M ) ) /\ k e. ( M ... x ) ) -> ( F ` k ) = ( G ` k ) ) |
| 11 | 7 10 | seqfveq | |- ( ( ph /\ x e. ( ZZ>= ` M ) ) -> ( seq M ( .+ , F ) ` x ) = ( seq M ( .+ , G ) ` x ) ) |
| 12 | 4 6 11 | eqfnfvd | |- ( ph -> seq M ( .+ , F ) = seq M ( .+ , G ) ) |