This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in the preimage of a set under a function. (Contributed by Jeff Madsen, 2-Sep-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elpreima | |- ( F Fn A -> ( B e. ( `' F " C ) <-> ( B e. A /\ ( F ` B ) e. C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvimass | |- ( `' F " C ) C_ dom F |
|
| 2 | 1 | sseli | |- ( B e. ( `' F " C ) -> B e. dom F ) |
| 3 | fndm | |- ( F Fn A -> dom F = A ) |
|
| 4 | 3 | eleq2d | |- ( F Fn A -> ( B e. dom F <-> B e. A ) ) |
| 5 | 2 4 | imbitrid | |- ( F Fn A -> ( B e. ( `' F " C ) -> B e. A ) ) |
| 6 | fnfun | |- ( F Fn A -> Fun F ) |
|
| 7 | fvimacnvi | |- ( ( Fun F /\ B e. ( `' F " C ) ) -> ( F ` B ) e. C ) |
|
| 8 | 6 7 | sylan | |- ( ( F Fn A /\ B e. ( `' F " C ) ) -> ( F ` B ) e. C ) |
| 9 | 8 | ex | |- ( F Fn A -> ( B e. ( `' F " C ) -> ( F ` B ) e. C ) ) |
| 10 | 5 9 | jcad | |- ( F Fn A -> ( B e. ( `' F " C ) -> ( B e. A /\ ( F ` B ) e. C ) ) ) |
| 11 | fvimacnv | |- ( ( Fun F /\ B e. dom F ) -> ( ( F ` B ) e. C <-> B e. ( `' F " C ) ) ) |
|
| 12 | 11 | funfni | |- ( ( F Fn A /\ B e. A ) -> ( ( F ` B ) e. C <-> B e. ( `' F " C ) ) ) |
| 13 | 12 | biimpd | |- ( ( F Fn A /\ B e. A ) -> ( ( F ` B ) e. C -> B e. ( `' F " C ) ) ) |
| 14 | 13 | expimpd | |- ( F Fn A -> ( ( B e. A /\ ( F ` B ) e. C ) -> B e. ( `' F " C ) ) ) |
| 15 | 10 14 | impbid | |- ( F Fn A -> ( B e. ( `' F " C ) <-> ( B e. A /\ ( F ` B ) e. C ) ) ) |