This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Existence of the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | seqex | |- seq M ( .+ , F ) e. _V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-seq | |- seq M ( .+ , F ) = ( rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( y .+ ( F ` ( x + 1 ) ) ) >. ) , <. M , ( F ` M ) >. ) " _om ) |
|
| 2 | rdgfun | |- Fun rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( y .+ ( F ` ( x + 1 ) ) ) >. ) , <. M , ( F ` M ) >. ) |
|
| 3 | omex | |- _om e. _V |
|
| 4 | funimaexg | |- ( ( Fun rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( y .+ ( F ` ( x + 1 ) ) ) >. ) , <. M , ( F ` M ) >. ) /\ _om e. _V ) -> ( rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( y .+ ( F ` ( x + 1 ) ) ) >. ) , <. M , ( F ` M ) >. ) " _om ) e. _V ) |
|
| 5 | 2 3 4 | mp2an | |- ( rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( y .+ ( F ` ( x + 1 ) ) ) >. ) , <. M , ( F ` M ) >. ) " _om ) e. _V |
| 6 | 1 5 | eqeltri | |- seq M ( .+ , F ) e. _V |