This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduction eliminating inequality definition. (Contributed by Jonathan Ben-Naim, 3-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | neneqd.1 | |- ( ph -> A =/= B ) |
|
| Assertion | neneqd | |- ( ph -> -. A = B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neneqd.1 | |- ( ph -> A =/= B ) |
|
| 2 | df-ne | |- ( A =/= B <-> -. A = B ) |
|
| 3 | 1 2 | sylib | |- ( ph -> -. A = B ) |