This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem neneqd

Description: Deduction eliminating inequality definition. (Contributed by Jonathan Ben-Naim, 3-Jun-2011)

Ref Expression
Hypothesis neneqd.1
|- ( ph -> A =/= B )
Assertion neneqd
|- ( ph -> -. A = B )

Proof

Step Hyp Ref Expression
1 neneqd.1
 |-  ( ph -> A =/= B )
2 df-ne
 |-  ( A =/= B <-> -. A = B )
3 1 2 sylib
 |-  ( ph -> -. A = B )