This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The number 0 is real. Remark: the first step could also be ax-icn . See also 0reALT . (Contributed by Eric Schmidt, 21-May-2007) (Revised by Scott Fenton, 3-Jan-2013) Reduce dependencies on axioms. (Revised by Steven Nguyen, 11-Oct-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 0re | |- 0 e. RR |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn | |- 1 e. CC |
|
| 2 | cnre | |- ( 1 e. CC -> E. x e. RR E. y e. RR 1 = ( x + ( _i x. y ) ) ) |
|
| 3 | ax-rnegex | |- ( x e. RR -> E. z e. RR ( x + z ) = 0 ) |
|
| 4 | readdcl | |- ( ( x e. RR /\ z e. RR ) -> ( x + z ) e. RR ) |
|
| 5 | eleq1 | |- ( ( x + z ) = 0 -> ( ( x + z ) e. RR <-> 0 e. RR ) ) |
|
| 6 | 4 5 | syl5ibcom | |- ( ( x e. RR /\ z e. RR ) -> ( ( x + z ) = 0 -> 0 e. RR ) ) |
| 7 | 6 | rexlimdva | |- ( x e. RR -> ( E. z e. RR ( x + z ) = 0 -> 0 e. RR ) ) |
| 8 | 3 7 | mpd | |- ( x e. RR -> 0 e. RR ) |
| 9 | 8 | adantr | |- ( ( x e. RR /\ E. y e. RR 1 = ( x + ( _i x. y ) ) ) -> 0 e. RR ) |
| 10 | 9 | rexlimiva | |- ( E. x e. RR E. y e. RR 1 = ( x + ( _i x. y ) ) -> 0 e. RR ) |
| 11 | 1 2 10 | mp2b | |- 0 e. RR |