This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The derivative of a power series on its region of convergence. (Contributed by Mario Carneiro, 31-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pserf.g | |- G = ( x e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( x ^ n ) ) ) ) |
|
| pserf.f | |- F = ( y e. S |-> sum_ j e. NN0 ( ( G ` y ) ` j ) ) |
||
| pserf.a | |- ( ph -> A : NN0 --> CC ) |
||
| pserf.r | |- R = sup ( { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } , RR* , < ) |
||
| psercn.s | |- S = ( `' abs " ( 0 [,) R ) ) |
||
| psercn.m | |- M = if ( R e. RR , ( ( ( abs ` a ) + R ) / 2 ) , ( ( abs ` a ) + 1 ) ) |
||
| pserdv.b | |- B = ( 0 ( ball ` ( abs o. - ) ) ( ( ( abs ` a ) + M ) / 2 ) ) |
||
| Assertion | pserdv2 | |- ( ph -> ( CC _D F ) = ( y e. S |-> sum_ k e. NN ( ( k x. ( A ` k ) ) x. ( y ^ ( k - 1 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pserf.g | |- G = ( x e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( x ^ n ) ) ) ) |
|
| 2 | pserf.f | |- F = ( y e. S |-> sum_ j e. NN0 ( ( G ` y ) ` j ) ) |
|
| 3 | pserf.a | |- ( ph -> A : NN0 --> CC ) |
|
| 4 | pserf.r | |- R = sup ( { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } , RR* , < ) |
|
| 5 | psercn.s | |- S = ( `' abs " ( 0 [,) R ) ) |
|
| 6 | psercn.m | |- M = if ( R e. RR , ( ( ( abs ` a ) + R ) / 2 ) , ( ( abs ` a ) + 1 ) ) |
|
| 7 | pserdv.b | |- B = ( 0 ( ball ` ( abs o. - ) ) ( ( ( abs ` a ) + M ) / 2 ) ) |
|
| 8 | 1 2 3 4 5 6 7 | pserdv | |- ( ph -> ( CC _D F ) = ( y e. S |-> sum_ m e. NN0 ( ( ( m + 1 ) x. ( A ` ( m + 1 ) ) ) x. ( y ^ m ) ) ) ) |
| 9 | nn0uz | |- NN0 = ( ZZ>= ` 0 ) |
|
| 10 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 11 | 1e0p1 | |- 1 = ( 0 + 1 ) |
|
| 12 | 11 | fveq2i | |- ( ZZ>= ` 1 ) = ( ZZ>= ` ( 0 + 1 ) ) |
| 13 | 10 12 | eqtri | |- NN = ( ZZ>= ` ( 0 + 1 ) ) |
| 14 | id | |- ( k = ( 1 + m ) -> k = ( 1 + m ) ) |
|
| 15 | fveq2 | |- ( k = ( 1 + m ) -> ( A ` k ) = ( A ` ( 1 + m ) ) ) |
|
| 16 | 14 15 | oveq12d | |- ( k = ( 1 + m ) -> ( k x. ( A ` k ) ) = ( ( 1 + m ) x. ( A ` ( 1 + m ) ) ) ) |
| 17 | oveq1 | |- ( k = ( 1 + m ) -> ( k - 1 ) = ( ( 1 + m ) - 1 ) ) |
|
| 18 | 17 | oveq2d | |- ( k = ( 1 + m ) -> ( y ^ ( k - 1 ) ) = ( y ^ ( ( 1 + m ) - 1 ) ) ) |
| 19 | 16 18 | oveq12d | |- ( k = ( 1 + m ) -> ( ( k x. ( A ` k ) ) x. ( y ^ ( k - 1 ) ) ) = ( ( ( 1 + m ) x. ( A ` ( 1 + m ) ) ) x. ( y ^ ( ( 1 + m ) - 1 ) ) ) ) |
| 20 | 1zzd | |- ( ( ph /\ y e. S ) -> 1 e. ZZ ) |
|
| 21 | 0zd | |- ( ( ph /\ y e. S ) -> 0 e. ZZ ) |
|
| 22 | nncn | |- ( k e. NN -> k e. CC ) |
|
| 23 | 22 | adantl | |- ( ( ( ph /\ y e. S ) /\ k e. NN ) -> k e. CC ) |
| 24 | 3 | adantr | |- ( ( ph /\ y e. S ) -> A : NN0 --> CC ) |
| 25 | nnnn0 | |- ( k e. NN -> k e. NN0 ) |
|
| 26 | ffvelcdm | |- ( ( A : NN0 --> CC /\ k e. NN0 ) -> ( A ` k ) e. CC ) |
|
| 27 | 24 25 26 | syl2an | |- ( ( ( ph /\ y e. S ) /\ k e. NN ) -> ( A ` k ) e. CC ) |
| 28 | 23 27 | mulcld | |- ( ( ( ph /\ y e. S ) /\ k e. NN ) -> ( k x. ( A ` k ) ) e. CC ) |
| 29 | cnvimass | |- ( `' abs " ( 0 [,) R ) ) C_ dom abs |
|
| 30 | absf | |- abs : CC --> RR |
|
| 31 | 30 | fdmi | |- dom abs = CC |
| 32 | 29 31 | sseqtri | |- ( `' abs " ( 0 [,) R ) ) C_ CC |
| 33 | 5 32 | eqsstri | |- S C_ CC |
| 34 | 33 | a1i | |- ( ph -> S C_ CC ) |
| 35 | 34 | sselda | |- ( ( ph /\ y e. S ) -> y e. CC ) |
| 36 | nnm1nn0 | |- ( k e. NN -> ( k - 1 ) e. NN0 ) |
|
| 37 | expcl | |- ( ( y e. CC /\ ( k - 1 ) e. NN0 ) -> ( y ^ ( k - 1 ) ) e. CC ) |
|
| 38 | 35 36 37 | syl2an | |- ( ( ( ph /\ y e. S ) /\ k e. NN ) -> ( y ^ ( k - 1 ) ) e. CC ) |
| 39 | 28 38 | mulcld | |- ( ( ( ph /\ y e. S ) /\ k e. NN ) -> ( ( k x. ( A ` k ) ) x. ( y ^ ( k - 1 ) ) ) e. CC ) |
| 40 | 9 13 19 20 21 39 | isumshft | |- ( ( ph /\ y e. S ) -> sum_ k e. NN ( ( k x. ( A ` k ) ) x. ( y ^ ( k - 1 ) ) ) = sum_ m e. NN0 ( ( ( 1 + m ) x. ( A ` ( 1 + m ) ) ) x. ( y ^ ( ( 1 + m ) - 1 ) ) ) ) |
| 41 | ax-1cn | |- 1 e. CC |
|
| 42 | nn0cn | |- ( m e. NN0 -> m e. CC ) |
|
| 43 | 42 | adantl | |- ( ( ( ph /\ y e. S ) /\ m e. NN0 ) -> m e. CC ) |
| 44 | addcom | |- ( ( 1 e. CC /\ m e. CC ) -> ( 1 + m ) = ( m + 1 ) ) |
|
| 45 | 41 43 44 | sylancr | |- ( ( ( ph /\ y e. S ) /\ m e. NN0 ) -> ( 1 + m ) = ( m + 1 ) ) |
| 46 | 45 | fveq2d | |- ( ( ( ph /\ y e. S ) /\ m e. NN0 ) -> ( A ` ( 1 + m ) ) = ( A ` ( m + 1 ) ) ) |
| 47 | 45 46 | oveq12d | |- ( ( ( ph /\ y e. S ) /\ m e. NN0 ) -> ( ( 1 + m ) x. ( A ` ( 1 + m ) ) ) = ( ( m + 1 ) x. ( A ` ( m + 1 ) ) ) ) |
| 48 | pncan2 | |- ( ( 1 e. CC /\ m e. CC ) -> ( ( 1 + m ) - 1 ) = m ) |
|
| 49 | 41 43 48 | sylancr | |- ( ( ( ph /\ y e. S ) /\ m e. NN0 ) -> ( ( 1 + m ) - 1 ) = m ) |
| 50 | 49 | oveq2d | |- ( ( ( ph /\ y e. S ) /\ m e. NN0 ) -> ( y ^ ( ( 1 + m ) - 1 ) ) = ( y ^ m ) ) |
| 51 | 47 50 | oveq12d | |- ( ( ( ph /\ y e. S ) /\ m e. NN0 ) -> ( ( ( 1 + m ) x. ( A ` ( 1 + m ) ) ) x. ( y ^ ( ( 1 + m ) - 1 ) ) ) = ( ( ( m + 1 ) x. ( A ` ( m + 1 ) ) ) x. ( y ^ m ) ) ) |
| 52 | 51 | sumeq2dv | |- ( ( ph /\ y e. S ) -> sum_ m e. NN0 ( ( ( 1 + m ) x. ( A ` ( 1 + m ) ) ) x. ( y ^ ( ( 1 + m ) - 1 ) ) ) = sum_ m e. NN0 ( ( ( m + 1 ) x. ( A ` ( m + 1 ) ) ) x. ( y ^ m ) ) ) |
| 53 | 40 52 | eqtr2d | |- ( ( ph /\ y e. S ) -> sum_ m e. NN0 ( ( ( m + 1 ) x. ( A ` ( m + 1 ) ) ) x. ( y ^ m ) ) = sum_ k e. NN ( ( k x. ( A ` k ) ) x. ( y ^ ( k - 1 ) ) ) ) |
| 54 | 53 | mpteq2dva | |- ( ph -> ( y e. S |-> sum_ m e. NN0 ( ( ( m + 1 ) x. ( A ` ( m + 1 ) ) ) x. ( y ^ m ) ) ) = ( y e. S |-> sum_ k e. NN ( ( k x. ( A ` k ) ) x. ( y ^ ( k - 1 ) ) ) ) ) |
| 55 | 8 54 | eqtrd | |- ( ph -> ( CC _D F ) = ( y e. S |-> sum_ k e. NN ( ( k x. ( A ` k ) ) x. ( y ^ ( k - 1 ) ) ) ) ) |