This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An infinite series converges to a continuous function on the open disk of radius R , where R is the radius of convergence of the series. (Contributed by Mario Carneiro, 4-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pserf.g | |- G = ( x e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( x ^ n ) ) ) ) |
|
| pserf.f | |- F = ( y e. S |-> sum_ j e. NN0 ( ( G ` y ) ` j ) ) |
||
| pserf.a | |- ( ph -> A : NN0 --> CC ) |
||
| pserf.r | |- R = sup ( { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } , RR* , < ) |
||
| psercn.s | |- S = ( `' abs " ( 0 [,) R ) ) |
||
| psercn.m | |- M = if ( R e. RR , ( ( ( abs ` a ) + R ) / 2 ) , ( ( abs ` a ) + 1 ) ) |
||
| Assertion | psercn | |- ( ph -> F e. ( S -cn-> CC ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pserf.g | |- G = ( x e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( x ^ n ) ) ) ) |
|
| 2 | pserf.f | |- F = ( y e. S |-> sum_ j e. NN0 ( ( G ` y ) ` j ) ) |
|
| 3 | pserf.a | |- ( ph -> A : NN0 --> CC ) |
|
| 4 | pserf.r | |- R = sup ( { r e. RR | seq 0 ( + , ( G ` r ) ) e. dom ~~> } , RR* , < ) |
|
| 5 | psercn.s | |- S = ( `' abs " ( 0 [,) R ) ) |
|
| 6 | psercn.m | |- M = if ( R e. RR , ( ( ( abs ` a ) + R ) / 2 ) , ( ( abs ` a ) + 1 ) ) |
|
| 7 | sumex | |- sum_ j e. NN0 ( ( G ` y ) ` j ) e. _V |
|
| 8 | 7 | rgenw | |- A. y e. S sum_ j e. NN0 ( ( G ` y ) ` j ) e. _V |
| 9 | 2 | fnmpt | |- ( A. y e. S sum_ j e. NN0 ( ( G ` y ) ` j ) e. _V -> F Fn S ) |
| 10 | 8 9 | mp1i | |- ( ph -> F Fn S ) |
| 11 | cnvimass | |- ( `' abs " ( 0 [,) R ) ) C_ dom abs |
|
| 12 | absf | |- abs : CC --> RR |
|
| 13 | 12 | fdmi | |- dom abs = CC |
| 14 | 11 13 | sseqtri | |- ( `' abs " ( 0 [,) R ) ) C_ CC |
| 15 | 5 14 | eqsstri | |- S C_ CC |
| 16 | 15 | a1i | |- ( ph -> S C_ CC ) |
| 17 | 16 | sselda | |- ( ( ph /\ a e. S ) -> a e. CC ) |
| 18 | 0cn | |- 0 e. CC |
|
| 19 | eqid | |- ( abs o. - ) = ( abs o. - ) |
|
| 20 | 19 | cnmetdval | |- ( ( 0 e. CC /\ a e. CC ) -> ( 0 ( abs o. - ) a ) = ( abs ` ( 0 - a ) ) ) |
| 21 | 18 17 20 | sylancr | |- ( ( ph /\ a e. S ) -> ( 0 ( abs o. - ) a ) = ( abs ` ( 0 - a ) ) ) |
| 22 | abssub | |- ( ( 0 e. CC /\ a e. CC ) -> ( abs ` ( 0 - a ) ) = ( abs ` ( a - 0 ) ) ) |
|
| 23 | 18 17 22 | sylancr | |- ( ( ph /\ a e. S ) -> ( abs ` ( 0 - a ) ) = ( abs ` ( a - 0 ) ) ) |
| 24 | 17 | subid1d | |- ( ( ph /\ a e. S ) -> ( a - 0 ) = a ) |
| 25 | 24 | fveq2d | |- ( ( ph /\ a e. S ) -> ( abs ` ( a - 0 ) ) = ( abs ` a ) ) |
| 26 | 21 23 25 | 3eqtrd | |- ( ( ph /\ a e. S ) -> ( 0 ( abs o. - ) a ) = ( abs ` a ) ) |
| 27 | breq2 | |- ( ( ( ( abs ` a ) + R ) / 2 ) = if ( R e. RR , ( ( ( abs ` a ) + R ) / 2 ) , ( ( abs ` a ) + 1 ) ) -> ( ( abs ` a ) < ( ( ( abs ` a ) + R ) / 2 ) <-> ( abs ` a ) < if ( R e. RR , ( ( ( abs ` a ) + R ) / 2 ) , ( ( abs ` a ) + 1 ) ) ) ) |
|
| 28 | breq2 | |- ( ( ( abs ` a ) + 1 ) = if ( R e. RR , ( ( ( abs ` a ) + R ) / 2 ) , ( ( abs ` a ) + 1 ) ) -> ( ( abs ` a ) < ( ( abs ` a ) + 1 ) <-> ( abs ` a ) < if ( R e. RR , ( ( ( abs ` a ) + R ) / 2 ) , ( ( abs ` a ) + 1 ) ) ) ) |
|
| 29 | simpr | |- ( ( ph /\ a e. S ) -> a e. S ) |
|
| 30 | 29 5 | eleqtrdi | |- ( ( ph /\ a e. S ) -> a e. ( `' abs " ( 0 [,) R ) ) ) |
| 31 | ffn | |- ( abs : CC --> RR -> abs Fn CC ) |
|
| 32 | elpreima | |- ( abs Fn CC -> ( a e. ( `' abs " ( 0 [,) R ) ) <-> ( a e. CC /\ ( abs ` a ) e. ( 0 [,) R ) ) ) ) |
|
| 33 | 12 31 32 | mp2b | |- ( a e. ( `' abs " ( 0 [,) R ) ) <-> ( a e. CC /\ ( abs ` a ) e. ( 0 [,) R ) ) ) |
| 34 | 30 33 | sylib | |- ( ( ph /\ a e. S ) -> ( a e. CC /\ ( abs ` a ) e. ( 0 [,) R ) ) ) |
| 35 | 34 | simprd | |- ( ( ph /\ a e. S ) -> ( abs ` a ) e. ( 0 [,) R ) ) |
| 36 | 0re | |- 0 e. RR |
|
| 37 | iccssxr | |- ( 0 [,] +oo ) C_ RR* |
|
| 38 | 1 3 4 | radcnvcl | |- ( ph -> R e. ( 0 [,] +oo ) ) |
| 39 | 38 | adantr | |- ( ( ph /\ a e. S ) -> R e. ( 0 [,] +oo ) ) |
| 40 | 37 39 | sselid | |- ( ( ph /\ a e. S ) -> R e. RR* ) |
| 41 | elico2 | |- ( ( 0 e. RR /\ R e. RR* ) -> ( ( abs ` a ) e. ( 0 [,) R ) <-> ( ( abs ` a ) e. RR /\ 0 <_ ( abs ` a ) /\ ( abs ` a ) < R ) ) ) |
|
| 42 | 36 40 41 | sylancr | |- ( ( ph /\ a e. S ) -> ( ( abs ` a ) e. ( 0 [,) R ) <-> ( ( abs ` a ) e. RR /\ 0 <_ ( abs ` a ) /\ ( abs ` a ) < R ) ) ) |
| 43 | 35 42 | mpbid | |- ( ( ph /\ a e. S ) -> ( ( abs ` a ) e. RR /\ 0 <_ ( abs ` a ) /\ ( abs ` a ) < R ) ) |
| 44 | 43 | simp3d | |- ( ( ph /\ a e. S ) -> ( abs ` a ) < R ) |
| 45 | 44 | adantr | |- ( ( ( ph /\ a e. S ) /\ R e. RR ) -> ( abs ` a ) < R ) |
| 46 | 17 | abscld | |- ( ( ph /\ a e. S ) -> ( abs ` a ) e. RR ) |
| 47 | avglt1 | |- ( ( ( abs ` a ) e. RR /\ R e. RR ) -> ( ( abs ` a ) < R <-> ( abs ` a ) < ( ( ( abs ` a ) + R ) / 2 ) ) ) |
|
| 48 | 46 47 | sylan | |- ( ( ( ph /\ a e. S ) /\ R e. RR ) -> ( ( abs ` a ) < R <-> ( abs ` a ) < ( ( ( abs ` a ) + R ) / 2 ) ) ) |
| 49 | 45 48 | mpbid | |- ( ( ( ph /\ a e. S ) /\ R e. RR ) -> ( abs ` a ) < ( ( ( abs ` a ) + R ) / 2 ) ) |
| 50 | 46 | ltp1d | |- ( ( ph /\ a e. S ) -> ( abs ` a ) < ( ( abs ` a ) + 1 ) ) |
| 51 | 50 | adantr | |- ( ( ( ph /\ a e. S ) /\ -. R e. RR ) -> ( abs ` a ) < ( ( abs ` a ) + 1 ) ) |
| 52 | 27 28 49 51 | ifbothda | |- ( ( ph /\ a e. S ) -> ( abs ` a ) < if ( R e. RR , ( ( ( abs ` a ) + R ) / 2 ) , ( ( abs ` a ) + 1 ) ) ) |
| 53 | 52 6 | breqtrrdi | |- ( ( ph /\ a e. S ) -> ( abs ` a ) < M ) |
| 54 | 26 53 | eqbrtrd | |- ( ( ph /\ a e. S ) -> ( 0 ( abs o. - ) a ) < M ) |
| 55 | cnxmet | |- ( abs o. - ) e. ( *Met ` CC ) |
|
| 56 | 1 2 3 4 5 6 | psercnlem1 | |- ( ( ph /\ a e. S ) -> ( M e. RR+ /\ ( abs ` a ) < M /\ M < R ) ) |
| 57 | 56 | simp1d | |- ( ( ph /\ a e. S ) -> M e. RR+ ) |
| 58 | 57 | rpxrd | |- ( ( ph /\ a e. S ) -> M e. RR* ) |
| 59 | elbl | |- ( ( ( abs o. - ) e. ( *Met ` CC ) /\ 0 e. CC /\ M e. RR* ) -> ( a e. ( 0 ( ball ` ( abs o. - ) ) M ) <-> ( a e. CC /\ ( 0 ( abs o. - ) a ) < M ) ) ) |
|
| 60 | 55 18 58 59 | mp3an12i | |- ( ( ph /\ a e. S ) -> ( a e. ( 0 ( ball ` ( abs o. - ) ) M ) <-> ( a e. CC /\ ( 0 ( abs o. - ) a ) < M ) ) ) |
| 61 | 17 54 60 | mpbir2and | |- ( ( ph /\ a e. S ) -> a e. ( 0 ( ball ` ( abs o. - ) ) M ) ) |
| 62 | 61 | fvresd | |- ( ( ph /\ a e. S ) -> ( ( F |` ( 0 ( ball ` ( abs o. - ) ) M ) ) ` a ) = ( F ` a ) ) |
| 63 | 2 | reseq1i | |- ( F |` ( 0 ( ball ` ( abs o. - ) ) M ) ) = ( ( y e. S |-> sum_ j e. NN0 ( ( G ` y ) ` j ) ) |` ( 0 ( ball ` ( abs o. - ) ) M ) ) |
| 64 | 1 2 3 4 5 56 | psercnlem2 | |- ( ( ph /\ a e. S ) -> ( a e. ( 0 ( ball ` ( abs o. - ) ) M ) /\ ( 0 ( ball ` ( abs o. - ) ) M ) C_ ( `' abs " ( 0 [,] M ) ) /\ ( `' abs " ( 0 [,] M ) ) C_ S ) ) |
| 65 | 64 | simp2d | |- ( ( ph /\ a e. S ) -> ( 0 ( ball ` ( abs o. - ) ) M ) C_ ( `' abs " ( 0 [,] M ) ) ) |
| 66 | 64 | simp3d | |- ( ( ph /\ a e. S ) -> ( `' abs " ( 0 [,] M ) ) C_ S ) |
| 67 | 65 66 | sstrd | |- ( ( ph /\ a e. S ) -> ( 0 ( ball ` ( abs o. - ) ) M ) C_ S ) |
| 68 | 67 | resmptd | |- ( ( ph /\ a e. S ) -> ( ( y e. S |-> sum_ j e. NN0 ( ( G ` y ) ` j ) ) |` ( 0 ( ball ` ( abs o. - ) ) M ) ) = ( y e. ( 0 ( ball ` ( abs o. - ) ) M ) |-> sum_ j e. NN0 ( ( G ` y ) ` j ) ) ) |
| 69 | 63 68 | eqtrid | |- ( ( ph /\ a e. S ) -> ( F |` ( 0 ( ball ` ( abs o. - ) ) M ) ) = ( y e. ( 0 ( ball ` ( abs o. - ) ) M ) |-> sum_ j e. NN0 ( ( G ` y ) ` j ) ) ) |
| 70 | eqid | |- ( y e. ( 0 ( ball ` ( abs o. - ) ) M ) |-> sum_ j e. NN0 ( ( G ` y ) ` j ) ) = ( y e. ( 0 ( ball ` ( abs o. - ) ) M ) |-> sum_ j e. NN0 ( ( G ` y ) ` j ) ) |
|
| 71 | 3 | adantr | |- ( ( ph /\ a e. S ) -> A : NN0 --> CC ) |
| 72 | fveq2 | |- ( k = y -> ( G ` k ) = ( G ` y ) ) |
|
| 73 | 72 | seqeq3d | |- ( k = y -> seq 0 ( + , ( G ` k ) ) = seq 0 ( + , ( G ` y ) ) ) |
| 74 | 73 | fveq1d | |- ( k = y -> ( seq 0 ( + , ( G ` k ) ) ` s ) = ( seq 0 ( + , ( G ` y ) ) ` s ) ) |
| 75 | 74 | cbvmptv | |- ( k e. ( 0 ( ball ` ( abs o. - ) ) M ) |-> ( seq 0 ( + , ( G ` k ) ) ` s ) ) = ( y e. ( 0 ( ball ` ( abs o. - ) ) M ) |-> ( seq 0 ( + , ( G ` y ) ) ` s ) ) |
| 76 | fveq2 | |- ( s = i -> ( seq 0 ( + , ( G ` y ) ) ` s ) = ( seq 0 ( + , ( G ` y ) ) ` i ) ) |
|
| 77 | 76 | mpteq2dv | |- ( s = i -> ( y e. ( 0 ( ball ` ( abs o. - ) ) M ) |-> ( seq 0 ( + , ( G ` y ) ) ` s ) ) = ( y e. ( 0 ( ball ` ( abs o. - ) ) M ) |-> ( seq 0 ( + , ( G ` y ) ) ` i ) ) ) |
| 78 | 75 77 | eqtrid | |- ( s = i -> ( k e. ( 0 ( ball ` ( abs o. - ) ) M ) |-> ( seq 0 ( + , ( G ` k ) ) ` s ) ) = ( y e. ( 0 ( ball ` ( abs o. - ) ) M ) |-> ( seq 0 ( + , ( G ` y ) ) ` i ) ) ) |
| 79 | 78 | cbvmptv | |- ( s e. NN0 |-> ( k e. ( 0 ( ball ` ( abs o. - ) ) M ) |-> ( seq 0 ( + , ( G ` k ) ) ` s ) ) ) = ( i e. NN0 |-> ( y e. ( 0 ( ball ` ( abs o. - ) ) M ) |-> ( seq 0 ( + , ( G ` y ) ) ` i ) ) ) |
| 80 | 57 | rpred | |- ( ( ph /\ a e. S ) -> M e. RR ) |
| 81 | 56 | simp3d | |- ( ( ph /\ a e. S ) -> M < R ) |
| 82 | 1 70 71 4 79 80 81 65 | psercn2 | |- ( ( ph /\ a e. S ) -> ( y e. ( 0 ( ball ` ( abs o. - ) ) M ) |-> sum_ j e. NN0 ( ( G ` y ) ` j ) ) e. ( ( 0 ( ball ` ( abs o. - ) ) M ) -cn-> CC ) ) |
| 83 | 69 82 | eqeltrd | |- ( ( ph /\ a e. S ) -> ( F |` ( 0 ( ball ` ( abs o. - ) ) M ) ) e. ( ( 0 ( ball ` ( abs o. - ) ) M ) -cn-> CC ) ) |
| 84 | cncff | |- ( ( F |` ( 0 ( ball ` ( abs o. - ) ) M ) ) e. ( ( 0 ( ball ` ( abs o. - ) ) M ) -cn-> CC ) -> ( F |` ( 0 ( ball ` ( abs o. - ) ) M ) ) : ( 0 ( ball ` ( abs o. - ) ) M ) --> CC ) |
|
| 85 | 83 84 | syl | |- ( ( ph /\ a e. S ) -> ( F |` ( 0 ( ball ` ( abs o. - ) ) M ) ) : ( 0 ( ball ` ( abs o. - ) ) M ) --> CC ) |
| 86 | 85 61 | ffvelcdmd | |- ( ( ph /\ a e. S ) -> ( ( F |` ( 0 ( ball ` ( abs o. - ) ) M ) ) ` a ) e. CC ) |
| 87 | 62 86 | eqeltrrd | |- ( ( ph /\ a e. S ) -> ( F ` a ) e. CC ) |
| 88 | 87 | ralrimiva | |- ( ph -> A. a e. S ( F ` a ) e. CC ) |
| 89 | ffnfv | |- ( F : S --> CC <-> ( F Fn S /\ A. a e. S ( F ` a ) e. CC ) ) |
|
| 90 | 10 88 89 | sylanbrc | |- ( ph -> F : S --> CC ) |
| 91 | 67 15 | sstrdi | |- ( ( ph /\ a e. S ) -> ( 0 ( ball ` ( abs o. - ) ) M ) C_ CC ) |
| 92 | ssid | |- CC C_ CC |
|
| 93 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 94 | eqid | |- ( ( TopOpen ` CCfld ) |`t ( 0 ( ball ` ( abs o. - ) ) M ) ) = ( ( TopOpen ` CCfld ) |`t ( 0 ( ball ` ( abs o. - ) ) M ) ) |
|
| 95 | 93 | cnfldtopon | |- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
| 96 | 95 | toponrestid | |- ( TopOpen ` CCfld ) = ( ( TopOpen ` CCfld ) |`t CC ) |
| 97 | 93 94 96 | cncfcn | |- ( ( ( 0 ( ball ` ( abs o. - ) ) M ) C_ CC /\ CC C_ CC ) -> ( ( 0 ( ball ` ( abs o. - ) ) M ) -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t ( 0 ( ball ` ( abs o. - ) ) M ) ) Cn ( TopOpen ` CCfld ) ) ) |
| 98 | 91 92 97 | sylancl | |- ( ( ph /\ a e. S ) -> ( ( 0 ( ball ` ( abs o. - ) ) M ) -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t ( 0 ( ball ` ( abs o. - ) ) M ) ) Cn ( TopOpen ` CCfld ) ) ) |
| 99 | 83 98 | eleqtrd | |- ( ( ph /\ a e. S ) -> ( F |` ( 0 ( ball ` ( abs o. - ) ) M ) ) e. ( ( ( TopOpen ` CCfld ) |`t ( 0 ( ball ` ( abs o. - ) ) M ) ) Cn ( TopOpen ` CCfld ) ) ) |
| 100 | 93 | cnfldtop | |- ( TopOpen ` CCfld ) e. Top |
| 101 | unicntop | |- CC = U. ( TopOpen ` CCfld ) |
|
| 102 | 101 | restuni | |- ( ( ( TopOpen ` CCfld ) e. Top /\ ( 0 ( ball ` ( abs o. - ) ) M ) C_ CC ) -> ( 0 ( ball ` ( abs o. - ) ) M ) = U. ( ( TopOpen ` CCfld ) |`t ( 0 ( ball ` ( abs o. - ) ) M ) ) ) |
| 103 | 100 91 102 | sylancr | |- ( ( ph /\ a e. S ) -> ( 0 ( ball ` ( abs o. - ) ) M ) = U. ( ( TopOpen ` CCfld ) |`t ( 0 ( ball ` ( abs o. - ) ) M ) ) ) |
| 104 | 61 103 | eleqtrd | |- ( ( ph /\ a e. S ) -> a e. U. ( ( TopOpen ` CCfld ) |`t ( 0 ( ball ` ( abs o. - ) ) M ) ) ) |
| 105 | eqid | |- U. ( ( TopOpen ` CCfld ) |`t ( 0 ( ball ` ( abs o. - ) ) M ) ) = U. ( ( TopOpen ` CCfld ) |`t ( 0 ( ball ` ( abs o. - ) ) M ) ) |
|
| 106 | 105 | cncnpi | |- ( ( ( F |` ( 0 ( ball ` ( abs o. - ) ) M ) ) e. ( ( ( TopOpen ` CCfld ) |`t ( 0 ( ball ` ( abs o. - ) ) M ) ) Cn ( TopOpen ` CCfld ) ) /\ a e. U. ( ( TopOpen ` CCfld ) |`t ( 0 ( ball ` ( abs o. - ) ) M ) ) ) -> ( F |` ( 0 ( ball ` ( abs o. - ) ) M ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t ( 0 ( ball ` ( abs o. - ) ) M ) ) CnP ( TopOpen ` CCfld ) ) ` a ) ) |
| 107 | 99 104 106 | syl2anc | |- ( ( ph /\ a e. S ) -> ( F |` ( 0 ( ball ` ( abs o. - ) ) M ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t ( 0 ( ball ` ( abs o. - ) ) M ) ) CnP ( TopOpen ` CCfld ) ) ` a ) ) |
| 108 | cnex | |- CC e. _V |
|
| 109 | 108 15 | ssexi | |- S e. _V |
| 110 | 109 | a1i | |- ( ( ph /\ a e. S ) -> S e. _V ) |
| 111 | restabs | |- ( ( ( TopOpen ` CCfld ) e. Top /\ ( 0 ( ball ` ( abs o. - ) ) M ) C_ S /\ S e. _V ) -> ( ( ( TopOpen ` CCfld ) |`t S ) |`t ( 0 ( ball ` ( abs o. - ) ) M ) ) = ( ( TopOpen ` CCfld ) |`t ( 0 ( ball ` ( abs o. - ) ) M ) ) ) |
|
| 112 | 100 67 110 111 | mp3an2i | |- ( ( ph /\ a e. S ) -> ( ( ( TopOpen ` CCfld ) |`t S ) |`t ( 0 ( ball ` ( abs o. - ) ) M ) ) = ( ( TopOpen ` CCfld ) |`t ( 0 ( ball ` ( abs o. - ) ) M ) ) ) |
| 113 | 112 | oveq1d | |- ( ( ph /\ a e. S ) -> ( ( ( ( TopOpen ` CCfld ) |`t S ) |`t ( 0 ( ball ` ( abs o. - ) ) M ) ) CnP ( TopOpen ` CCfld ) ) = ( ( ( TopOpen ` CCfld ) |`t ( 0 ( ball ` ( abs o. - ) ) M ) ) CnP ( TopOpen ` CCfld ) ) ) |
| 114 | 113 | fveq1d | |- ( ( ph /\ a e. S ) -> ( ( ( ( ( TopOpen ` CCfld ) |`t S ) |`t ( 0 ( ball ` ( abs o. - ) ) M ) ) CnP ( TopOpen ` CCfld ) ) ` a ) = ( ( ( ( TopOpen ` CCfld ) |`t ( 0 ( ball ` ( abs o. - ) ) M ) ) CnP ( TopOpen ` CCfld ) ) ` a ) ) |
| 115 | 107 114 | eleqtrrd | |- ( ( ph /\ a e. S ) -> ( F |` ( 0 ( ball ` ( abs o. - ) ) M ) ) e. ( ( ( ( ( TopOpen ` CCfld ) |`t S ) |`t ( 0 ( ball ` ( abs o. - ) ) M ) ) CnP ( TopOpen ` CCfld ) ) ` a ) ) |
| 116 | resttop | |- ( ( ( TopOpen ` CCfld ) e. Top /\ S e. _V ) -> ( ( TopOpen ` CCfld ) |`t S ) e. Top ) |
|
| 117 | 100 109 116 | mp2an | |- ( ( TopOpen ` CCfld ) |`t S ) e. Top |
| 118 | 117 | a1i | |- ( ( ph /\ a e. S ) -> ( ( TopOpen ` CCfld ) |`t S ) e. Top ) |
| 119 | dfss2 | |- ( ( 0 ( ball ` ( abs o. - ) ) M ) C_ S <-> ( ( 0 ( ball ` ( abs o. - ) ) M ) i^i S ) = ( 0 ( ball ` ( abs o. - ) ) M ) ) |
|
| 120 | 67 119 | sylib | |- ( ( ph /\ a e. S ) -> ( ( 0 ( ball ` ( abs o. - ) ) M ) i^i S ) = ( 0 ( ball ` ( abs o. - ) ) M ) ) |
| 121 | 93 | cnfldtopn | |- ( TopOpen ` CCfld ) = ( MetOpen ` ( abs o. - ) ) |
| 122 | 121 | blopn | |- ( ( ( abs o. - ) e. ( *Met ` CC ) /\ 0 e. CC /\ M e. RR* ) -> ( 0 ( ball ` ( abs o. - ) ) M ) e. ( TopOpen ` CCfld ) ) |
| 123 | 55 18 58 122 | mp3an12i | |- ( ( ph /\ a e. S ) -> ( 0 ( ball ` ( abs o. - ) ) M ) e. ( TopOpen ` CCfld ) ) |
| 124 | elrestr | |- ( ( ( TopOpen ` CCfld ) e. Top /\ S e. _V /\ ( 0 ( ball ` ( abs o. - ) ) M ) e. ( TopOpen ` CCfld ) ) -> ( ( 0 ( ball ` ( abs o. - ) ) M ) i^i S ) e. ( ( TopOpen ` CCfld ) |`t S ) ) |
|
| 125 | 100 109 123 124 | mp3an12i | |- ( ( ph /\ a e. S ) -> ( ( 0 ( ball ` ( abs o. - ) ) M ) i^i S ) e. ( ( TopOpen ` CCfld ) |`t S ) ) |
| 126 | 120 125 | eqeltrrd | |- ( ( ph /\ a e. S ) -> ( 0 ( ball ` ( abs o. - ) ) M ) e. ( ( TopOpen ` CCfld ) |`t S ) ) |
| 127 | isopn3i | |- ( ( ( ( TopOpen ` CCfld ) |`t S ) e. Top /\ ( 0 ( ball ` ( abs o. - ) ) M ) e. ( ( TopOpen ` CCfld ) |`t S ) ) -> ( ( int ` ( ( TopOpen ` CCfld ) |`t S ) ) ` ( 0 ( ball ` ( abs o. - ) ) M ) ) = ( 0 ( ball ` ( abs o. - ) ) M ) ) |
|
| 128 | 117 126 127 | sylancr | |- ( ( ph /\ a e. S ) -> ( ( int ` ( ( TopOpen ` CCfld ) |`t S ) ) ` ( 0 ( ball ` ( abs o. - ) ) M ) ) = ( 0 ( ball ` ( abs o. - ) ) M ) ) |
| 129 | 61 128 | eleqtrrd | |- ( ( ph /\ a e. S ) -> a e. ( ( int ` ( ( TopOpen ` CCfld ) |`t S ) ) ` ( 0 ( ball ` ( abs o. - ) ) M ) ) ) |
| 130 | 90 | adantr | |- ( ( ph /\ a e. S ) -> F : S --> CC ) |
| 131 | 101 | restuni | |- ( ( ( TopOpen ` CCfld ) e. Top /\ S C_ CC ) -> S = U. ( ( TopOpen ` CCfld ) |`t S ) ) |
| 132 | 100 15 131 | mp2an | |- S = U. ( ( TopOpen ` CCfld ) |`t S ) |
| 133 | 132 101 | cnprest | |- ( ( ( ( ( TopOpen ` CCfld ) |`t S ) e. Top /\ ( 0 ( ball ` ( abs o. - ) ) M ) C_ S ) /\ ( a e. ( ( int ` ( ( TopOpen ` CCfld ) |`t S ) ) ` ( 0 ( ball ` ( abs o. - ) ) M ) ) /\ F : S --> CC ) ) -> ( F e. ( ( ( ( TopOpen ` CCfld ) |`t S ) CnP ( TopOpen ` CCfld ) ) ` a ) <-> ( F |` ( 0 ( ball ` ( abs o. - ) ) M ) ) e. ( ( ( ( ( TopOpen ` CCfld ) |`t S ) |`t ( 0 ( ball ` ( abs o. - ) ) M ) ) CnP ( TopOpen ` CCfld ) ) ` a ) ) ) |
| 134 | 118 67 129 130 133 | syl22anc | |- ( ( ph /\ a e. S ) -> ( F e. ( ( ( ( TopOpen ` CCfld ) |`t S ) CnP ( TopOpen ` CCfld ) ) ` a ) <-> ( F |` ( 0 ( ball ` ( abs o. - ) ) M ) ) e. ( ( ( ( ( TopOpen ` CCfld ) |`t S ) |`t ( 0 ( ball ` ( abs o. - ) ) M ) ) CnP ( TopOpen ` CCfld ) ) ` a ) ) ) |
| 135 | 115 134 | mpbird | |- ( ( ph /\ a e. S ) -> F e. ( ( ( ( TopOpen ` CCfld ) |`t S ) CnP ( TopOpen ` CCfld ) ) ` a ) ) |
| 136 | 135 | ralrimiva | |- ( ph -> A. a e. S F e. ( ( ( ( TopOpen ` CCfld ) |`t S ) CnP ( TopOpen ` CCfld ) ) ` a ) ) |
| 137 | resttopon | |- ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ S C_ CC ) -> ( ( TopOpen ` CCfld ) |`t S ) e. ( TopOn ` S ) ) |
|
| 138 | 95 15 137 | mp2an | |- ( ( TopOpen ` CCfld ) |`t S ) e. ( TopOn ` S ) |
| 139 | cncnp | |- ( ( ( ( TopOpen ` CCfld ) |`t S ) e. ( TopOn ` S ) /\ ( TopOpen ` CCfld ) e. ( TopOn ` CC ) ) -> ( F e. ( ( ( TopOpen ` CCfld ) |`t S ) Cn ( TopOpen ` CCfld ) ) <-> ( F : S --> CC /\ A. a e. S F e. ( ( ( ( TopOpen ` CCfld ) |`t S ) CnP ( TopOpen ` CCfld ) ) ` a ) ) ) ) |
|
| 140 | 138 95 139 | mp2an | |- ( F e. ( ( ( TopOpen ` CCfld ) |`t S ) Cn ( TopOpen ` CCfld ) ) <-> ( F : S --> CC /\ A. a e. S F e. ( ( ( ( TopOpen ` CCfld ) |`t S ) CnP ( TopOpen ` CCfld ) ) ` a ) ) ) |
| 141 | 90 136 140 | sylanbrc | |- ( ph -> F e. ( ( ( TopOpen ` CCfld ) |`t S ) Cn ( TopOpen ` CCfld ) ) ) |
| 142 | eqid | |- ( ( TopOpen ` CCfld ) |`t S ) = ( ( TopOpen ` CCfld ) |`t S ) |
|
| 143 | 93 142 96 | cncfcn | |- ( ( S C_ CC /\ CC C_ CC ) -> ( S -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t S ) Cn ( TopOpen ` CCfld ) ) ) |
| 144 | 15 92 143 | mp2an | |- ( S -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t S ) Cn ( TopOpen ` CCfld ) ) |
| 145 | 141 144 | eleqtrrdi | |- ( ph -> F e. ( S -cn-> CC ) ) |