This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for dvlog2 . (Contributed by Mario Carneiro, 1-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | dvlog2.s | |- S = ( 1 ( ball ` ( abs o. - ) ) 1 ) |
|
| Assertion | dvlog2lem | |- S C_ ( CC \ ( -oo (,] 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvlog2.s | |- S = ( 1 ( ball ` ( abs o. - ) ) 1 ) |
|
| 2 | cnxmet | |- ( abs o. - ) e. ( *Met ` CC ) |
|
| 3 | ax-1cn | |- 1 e. CC |
|
| 4 | 1xr | |- 1 e. RR* |
|
| 5 | blssm | |- ( ( ( abs o. - ) e. ( *Met ` CC ) /\ 1 e. CC /\ 1 e. RR* ) -> ( 1 ( ball ` ( abs o. - ) ) 1 ) C_ CC ) |
|
| 6 | 2 3 4 5 | mp3an | |- ( 1 ( ball ` ( abs o. - ) ) 1 ) C_ CC |
| 7 | 1 6 | eqsstri | |- S C_ CC |
| 8 | 7 | sseli | |- ( x e. S -> x e. CC ) |
| 9 | 1red | |- ( x e. ( -oo (,] 0 ) -> 1 e. RR ) |
|
| 10 | cnmet | |- ( abs o. - ) e. ( Met ` CC ) |
|
| 11 | mnfxr | |- -oo e. RR* |
|
| 12 | 0re | |- 0 e. RR |
|
| 13 | iocssre | |- ( ( -oo e. RR* /\ 0 e. RR ) -> ( -oo (,] 0 ) C_ RR ) |
|
| 14 | 11 12 13 | mp2an | |- ( -oo (,] 0 ) C_ RR |
| 15 | ax-resscn | |- RR C_ CC |
|
| 16 | 14 15 | sstri | |- ( -oo (,] 0 ) C_ CC |
| 17 | 16 | sseli | |- ( x e. ( -oo (,] 0 ) -> x e. CC ) |
| 18 | metcl | |- ( ( ( abs o. - ) e. ( Met ` CC ) /\ 1 e. CC /\ x e. CC ) -> ( 1 ( abs o. - ) x ) e. RR ) |
|
| 19 | 10 3 17 18 | mp3an12i | |- ( x e. ( -oo (,] 0 ) -> ( 1 ( abs o. - ) x ) e. RR ) |
| 20 | 1m0e1 | |- ( 1 - 0 ) = 1 |
|
| 21 | 14 | sseli | |- ( x e. ( -oo (,] 0 ) -> x e. RR ) |
| 22 | 12 | a1i | |- ( x e. ( -oo (,] 0 ) -> 0 e. RR ) |
| 23 | elioc2 | |- ( ( -oo e. RR* /\ 0 e. RR ) -> ( x e. ( -oo (,] 0 ) <-> ( x e. RR /\ -oo < x /\ x <_ 0 ) ) ) |
|
| 24 | 11 12 23 | mp2an | |- ( x e. ( -oo (,] 0 ) <-> ( x e. RR /\ -oo < x /\ x <_ 0 ) ) |
| 25 | 24 | simp3bi | |- ( x e. ( -oo (,] 0 ) -> x <_ 0 ) |
| 26 | 21 22 9 25 | lesub2dd | |- ( x e. ( -oo (,] 0 ) -> ( 1 - 0 ) <_ ( 1 - x ) ) |
| 27 | 20 26 | eqbrtrrid | |- ( x e. ( -oo (,] 0 ) -> 1 <_ ( 1 - x ) ) |
| 28 | eqid | |- ( abs o. - ) = ( abs o. - ) |
|
| 29 | 28 | cnmetdval | |- ( ( 1 e. CC /\ x e. CC ) -> ( 1 ( abs o. - ) x ) = ( abs ` ( 1 - x ) ) ) |
| 30 | 3 17 29 | sylancr | |- ( x e. ( -oo (,] 0 ) -> ( 1 ( abs o. - ) x ) = ( abs ` ( 1 - x ) ) ) |
| 31 | 0le1 | |- 0 <_ 1 |
|
| 32 | 31 | a1i | |- ( x e. ( -oo (,] 0 ) -> 0 <_ 1 ) |
| 33 | 21 22 9 25 32 | letrd | |- ( x e. ( -oo (,] 0 ) -> x <_ 1 ) |
| 34 | 21 9 33 | abssubge0d | |- ( x e. ( -oo (,] 0 ) -> ( abs ` ( 1 - x ) ) = ( 1 - x ) ) |
| 35 | 30 34 | eqtrd | |- ( x e. ( -oo (,] 0 ) -> ( 1 ( abs o. - ) x ) = ( 1 - x ) ) |
| 36 | 27 35 | breqtrrd | |- ( x e. ( -oo (,] 0 ) -> 1 <_ ( 1 ( abs o. - ) x ) ) |
| 37 | 9 19 36 | lensymd | |- ( x e. ( -oo (,] 0 ) -> -. ( 1 ( abs o. - ) x ) < 1 ) |
| 38 | 2 | a1i | |- ( x e. ( -oo (,] 0 ) -> ( abs o. - ) e. ( *Met ` CC ) ) |
| 39 | 4 | a1i | |- ( x e. ( -oo (,] 0 ) -> 1 e. RR* ) |
| 40 | 3 | a1i | |- ( x e. ( -oo (,] 0 ) -> 1 e. CC ) |
| 41 | elbl2 | |- ( ( ( ( abs o. - ) e. ( *Met ` CC ) /\ 1 e. RR* ) /\ ( 1 e. CC /\ x e. CC ) ) -> ( x e. ( 1 ( ball ` ( abs o. - ) ) 1 ) <-> ( 1 ( abs o. - ) x ) < 1 ) ) |
|
| 42 | 38 39 40 17 41 | syl22anc | |- ( x e. ( -oo (,] 0 ) -> ( x e. ( 1 ( ball ` ( abs o. - ) ) 1 ) <-> ( 1 ( abs o. - ) x ) < 1 ) ) |
| 43 | 37 42 | mtbird | |- ( x e. ( -oo (,] 0 ) -> -. x e. ( 1 ( ball ` ( abs o. - ) ) 1 ) ) |
| 44 | 43 | con2i | |- ( x e. ( 1 ( ball ` ( abs o. - ) ) 1 ) -> -. x e. ( -oo (,] 0 ) ) |
| 45 | 44 1 | eleq2s | |- ( x e. S -> -. x e. ( -oo (,] 0 ) ) |
| 46 | 8 45 | eldifd | |- ( x e. S -> x e. ( CC \ ( -oo (,] 0 ) ) ) |
| 47 | 46 | ssriv | |- S C_ ( CC \ ( -oo (,] 0 ) ) |