This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a ball, with reversed distance function arguments. (Contributed by NM, 10-Nov-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elbl3 | |- ( ( ( D e. ( *Met ` X ) /\ R e. RR* ) /\ ( P e. X /\ A e. X ) ) -> ( A e. ( P ( ball ` D ) R ) <-> ( A D P ) < R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elbl2 | |- ( ( ( D e. ( *Met ` X ) /\ R e. RR* ) /\ ( P e. X /\ A e. X ) ) -> ( A e. ( P ( ball ` D ) R ) <-> ( P D A ) < R ) ) |
|
| 2 | xmetsym | |- ( ( D e. ( *Met ` X ) /\ P e. X /\ A e. X ) -> ( P D A ) = ( A D P ) ) |
|
| 3 | 2 | 3expb | |- ( ( D e. ( *Met ` X ) /\ ( P e. X /\ A e. X ) ) -> ( P D A ) = ( A D P ) ) |
| 4 | 3 | adantlr | |- ( ( ( D e. ( *Met ` X ) /\ R e. RR* ) /\ ( P e. X /\ A e. X ) ) -> ( P D A ) = ( A D P ) ) |
| 5 | 4 | breq1d | |- ( ( ( D e. ( *Met ` X ) /\ R e. RR* ) /\ ( P e. X /\ A e. X ) ) -> ( ( P D A ) < R <-> ( A D P ) < R ) ) |
| 6 | 1 5 | bitrd | |- ( ( ( D e. ( *Met ` X ) /\ R e. RR* ) /\ ( P e. X /\ A e. X ) ) -> ( A e. ( P ( ball ` D ) R ) <-> ( A D P ) < R ) ) |