This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality deduction for sum. (Contributed by NM, 3-Jan-2006) (Proof shortened by Glauco Siliprandi, 5-Apr-2020) Avoid axioms. (Revised by GG, 14-Aug-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | sumeq2sdv.1 | |- ( ph -> B = C ) |
|
| Assertion | sumeq2sdv | |- ( ph -> sum_ k e. A B = sum_ k e. A C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sumeq2sdv.1 | |- ( ph -> B = C ) |
|
| 2 | 1 | csbeq2dv | |- ( ph -> [_ n / k ]_ B = [_ n / k ]_ C ) |
| 3 | 2 | ifeq1d | |- ( ph -> if ( n e. A , [_ n / k ]_ B , 0 ) = if ( n e. A , [_ n / k ]_ C , 0 ) ) |
| 4 | 3 | mpteq2dv | |- ( ph -> ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) = ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ C , 0 ) ) ) |
| 5 | 4 | seqeq3d | |- ( ph -> seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) = seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ C , 0 ) ) ) ) |
| 6 | 5 | breq1d | |- ( ph -> ( seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x <-> seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ C , 0 ) ) ) ~~> x ) ) |
| 7 | 6 | anbi2d | |- ( ph -> ( ( A C_ ( ZZ>= ` m ) /\ seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) <-> ( A C_ ( ZZ>= ` m ) /\ seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ C , 0 ) ) ) ~~> x ) ) ) |
| 8 | 7 | rexbidv | |- ( ph -> ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) <-> E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ C , 0 ) ) ) ~~> x ) ) ) |
| 9 | 1 | csbeq2dv | |- ( ph -> [_ ( f ` n ) / k ]_ B = [_ ( f ` n ) / k ]_ C ) |
| 10 | 9 | mpteq2dv | |- ( ph -> ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) = ( n e. NN |-> [_ ( f ` n ) / k ]_ C ) ) |
| 11 | 10 | seqeq3d | |- ( ph -> seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) = seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ C ) ) ) |
| 12 | 11 | fveq1d | |- ( ph -> ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ C ) ) ` m ) ) |
| 13 | 12 | eqeq2d | |- ( ph -> ( x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) <-> x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ C ) ) ` m ) ) ) |
| 14 | 13 | anbi2d | |- ( ph -> ( ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) <-> ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ C ) ) ` m ) ) ) ) |
| 15 | 14 | exbidv | |- ( ph -> ( E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) <-> E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ C ) ) ` m ) ) ) ) |
| 16 | 15 | rexbidv | |- ( ph -> ( E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) <-> E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ C ) ) ` m ) ) ) ) |
| 17 | 8 16 | orbi12d | |- ( ph -> ( ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) ) <-> ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ C , 0 ) ) ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ C ) ) ` m ) ) ) ) ) |
| 18 | 17 | iotabidv | |- ( ph -> ( iota x ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) ) ) = ( iota x ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ C , 0 ) ) ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ C ) ) ` m ) ) ) ) ) |
| 19 | df-sum | |- sum_ k e. A B = ( iota x ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) ) ) |
|
| 20 | df-sum | |- sum_ k e. A C = ( iota x ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ C , 0 ) ) ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ C ) ) ` m ) ) ) ) |
|
| 21 | 18 19 20 | 3eqtr4g | |- ( ph -> sum_ k e. A B = sum_ k e. A C ) |