This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Index shift of an infinite sum. (Contributed by Paul Chapman, 31-Oct-2007) (Revised by Mario Carneiro, 24-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isumshft.1 | |- Z = ( ZZ>= ` M ) |
|
| isumshft.2 | |- W = ( ZZ>= ` ( M + K ) ) |
||
| isumshft.3 | |- ( j = ( K + k ) -> A = B ) |
||
| isumshft.4 | |- ( ph -> K e. ZZ ) |
||
| isumshft.5 | |- ( ph -> M e. ZZ ) |
||
| isumshft.6 | |- ( ( ph /\ j e. W ) -> A e. CC ) |
||
| Assertion | isumshft | |- ( ph -> sum_ j e. W A = sum_ k e. Z B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isumshft.1 | |- Z = ( ZZ>= ` M ) |
|
| 2 | isumshft.2 | |- W = ( ZZ>= ` ( M + K ) ) |
|
| 3 | isumshft.3 | |- ( j = ( K + k ) -> A = B ) |
|
| 4 | isumshft.4 | |- ( ph -> K e. ZZ ) |
|
| 5 | isumshft.5 | |- ( ph -> M e. ZZ ) |
|
| 6 | isumshft.6 | |- ( ( ph /\ j e. W ) -> A e. CC ) |
|
| 7 | 5 4 | zaddcld | |- ( ph -> ( M + K ) e. ZZ ) |
| 8 | 2 | eleq2i | |- ( m e. W <-> m e. ( ZZ>= ` ( M + K ) ) ) |
| 9 | 4 | zcnd | |- ( ph -> K e. CC ) |
| 10 | eluzelcn | |- ( m e. ( ZZ>= ` ( M + K ) ) -> m e. CC ) |
|
| 11 | 10 2 | eleq2s | |- ( m e. W -> m e. CC ) |
| 12 | 1 | fvexi | |- Z e. _V |
| 13 | 12 | mptex | |- ( k e. Z |-> B ) e. _V |
| 14 | 13 | shftval | |- ( ( K e. CC /\ m e. CC ) -> ( ( ( k e. Z |-> B ) shift K ) ` m ) = ( ( k e. Z |-> B ) ` ( m - K ) ) ) |
| 15 | 9 11 14 | syl2an | |- ( ( ph /\ m e. W ) -> ( ( ( k e. Z |-> B ) shift K ) ` m ) = ( ( k e. Z |-> B ) ` ( m - K ) ) ) |
| 16 | simpr | |- ( ( ph /\ k e. Z ) -> k e. Z ) |
|
| 17 | eqid | |- ( k e. Z |-> B ) = ( k e. Z |-> B ) |
|
| 18 | 17 | fvmpt2i | |- ( k e. Z -> ( ( k e. Z |-> B ) ` k ) = ( _I ` B ) ) |
| 19 | 16 18 | syl | |- ( ( ph /\ k e. Z ) -> ( ( k e. Z |-> B ) ` k ) = ( _I ` B ) ) |
| 20 | eluzelcn | |- ( k e. ( ZZ>= ` M ) -> k e. CC ) |
|
| 21 | 20 1 | eleq2s | |- ( k e. Z -> k e. CC ) |
| 22 | addcom | |- ( ( K e. CC /\ k e. CC ) -> ( K + k ) = ( k + K ) ) |
|
| 23 | 9 21 22 | syl2an | |- ( ( ph /\ k e. Z ) -> ( K + k ) = ( k + K ) ) |
| 24 | id | |- ( k e. Z -> k e. Z ) |
|
| 25 | 24 1 | eleqtrdi | |- ( k e. Z -> k e. ( ZZ>= ` M ) ) |
| 26 | eluzadd | |- ( ( k e. ( ZZ>= ` M ) /\ K e. ZZ ) -> ( k + K ) e. ( ZZ>= ` ( M + K ) ) ) |
|
| 27 | 25 4 26 | syl2anr | |- ( ( ph /\ k e. Z ) -> ( k + K ) e. ( ZZ>= ` ( M + K ) ) ) |
| 28 | 23 27 | eqeltrd | |- ( ( ph /\ k e. Z ) -> ( K + k ) e. ( ZZ>= ` ( M + K ) ) ) |
| 29 | 28 2 | eleqtrrdi | |- ( ( ph /\ k e. Z ) -> ( K + k ) e. W ) |
| 30 | eqid | |- ( j e. W |-> A ) = ( j e. W |-> A ) |
|
| 31 | 3 30 | fvmpti | |- ( ( K + k ) e. W -> ( ( j e. W |-> A ) ` ( K + k ) ) = ( _I ` B ) ) |
| 32 | 29 31 | syl | |- ( ( ph /\ k e. Z ) -> ( ( j e. W |-> A ) ` ( K + k ) ) = ( _I ` B ) ) |
| 33 | 19 32 | eqtr4d | |- ( ( ph /\ k e. Z ) -> ( ( k e. Z |-> B ) ` k ) = ( ( j e. W |-> A ) ` ( K + k ) ) ) |
| 34 | 33 | ralrimiva | |- ( ph -> A. k e. Z ( ( k e. Z |-> B ) ` k ) = ( ( j e. W |-> A ) ` ( K + k ) ) ) |
| 35 | nffvmpt1 | |- F/_ k ( ( k e. Z |-> B ) ` n ) |
|
| 36 | 35 | nfeq1 | |- F/ k ( ( k e. Z |-> B ) ` n ) = ( ( j e. W |-> A ) ` ( K + n ) ) |
| 37 | fveq2 | |- ( k = n -> ( ( k e. Z |-> B ) ` k ) = ( ( k e. Z |-> B ) ` n ) ) |
|
| 38 | oveq2 | |- ( k = n -> ( K + k ) = ( K + n ) ) |
|
| 39 | 38 | fveq2d | |- ( k = n -> ( ( j e. W |-> A ) ` ( K + k ) ) = ( ( j e. W |-> A ) ` ( K + n ) ) ) |
| 40 | 37 39 | eqeq12d | |- ( k = n -> ( ( ( k e. Z |-> B ) ` k ) = ( ( j e. W |-> A ) ` ( K + k ) ) <-> ( ( k e. Z |-> B ) ` n ) = ( ( j e. W |-> A ) ` ( K + n ) ) ) ) |
| 41 | 36 40 | rspc | |- ( n e. Z -> ( A. k e. Z ( ( k e. Z |-> B ) ` k ) = ( ( j e. W |-> A ) ` ( K + k ) ) -> ( ( k e. Z |-> B ) ` n ) = ( ( j e. W |-> A ) ` ( K + n ) ) ) ) |
| 42 | 34 41 | mpan9 | |- ( ( ph /\ n e. Z ) -> ( ( k e. Z |-> B ) ` n ) = ( ( j e. W |-> A ) ` ( K + n ) ) ) |
| 43 | 42 | ralrimiva | |- ( ph -> A. n e. Z ( ( k e. Z |-> B ) ` n ) = ( ( j e. W |-> A ) ` ( K + n ) ) ) |
| 44 | 5 | adantr | |- ( ( ph /\ m e. W ) -> M e. ZZ ) |
| 45 | 4 | adantr | |- ( ( ph /\ m e. W ) -> K e. ZZ ) |
| 46 | simpr | |- ( ( ph /\ m e. W ) -> m e. W ) |
|
| 47 | 46 2 | eleqtrdi | |- ( ( ph /\ m e. W ) -> m e. ( ZZ>= ` ( M + K ) ) ) |
| 48 | eluzsub | |- ( ( M e. ZZ /\ K e. ZZ /\ m e. ( ZZ>= ` ( M + K ) ) ) -> ( m - K ) e. ( ZZ>= ` M ) ) |
|
| 49 | 44 45 47 48 | syl3anc | |- ( ( ph /\ m e. W ) -> ( m - K ) e. ( ZZ>= ` M ) ) |
| 50 | 49 1 | eleqtrrdi | |- ( ( ph /\ m e. W ) -> ( m - K ) e. Z ) |
| 51 | fveq2 | |- ( n = ( m - K ) -> ( ( k e. Z |-> B ) ` n ) = ( ( k e. Z |-> B ) ` ( m - K ) ) ) |
|
| 52 | oveq2 | |- ( n = ( m - K ) -> ( K + n ) = ( K + ( m - K ) ) ) |
|
| 53 | 52 | fveq2d | |- ( n = ( m - K ) -> ( ( j e. W |-> A ) ` ( K + n ) ) = ( ( j e. W |-> A ) ` ( K + ( m - K ) ) ) ) |
| 54 | 51 53 | eqeq12d | |- ( n = ( m - K ) -> ( ( ( k e. Z |-> B ) ` n ) = ( ( j e. W |-> A ) ` ( K + n ) ) <-> ( ( k e. Z |-> B ) ` ( m - K ) ) = ( ( j e. W |-> A ) ` ( K + ( m - K ) ) ) ) ) |
| 55 | 54 | rspccva | |- ( ( A. n e. Z ( ( k e. Z |-> B ) ` n ) = ( ( j e. W |-> A ) ` ( K + n ) ) /\ ( m - K ) e. Z ) -> ( ( k e. Z |-> B ) ` ( m - K ) ) = ( ( j e. W |-> A ) ` ( K + ( m - K ) ) ) ) |
| 56 | 43 50 55 | syl2an2r | |- ( ( ph /\ m e. W ) -> ( ( k e. Z |-> B ) ` ( m - K ) ) = ( ( j e. W |-> A ) ` ( K + ( m - K ) ) ) ) |
| 57 | pncan3 | |- ( ( K e. CC /\ m e. CC ) -> ( K + ( m - K ) ) = m ) |
|
| 58 | 9 11 57 | syl2an | |- ( ( ph /\ m e. W ) -> ( K + ( m - K ) ) = m ) |
| 59 | 58 | fveq2d | |- ( ( ph /\ m e. W ) -> ( ( j e. W |-> A ) ` ( K + ( m - K ) ) ) = ( ( j e. W |-> A ) ` m ) ) |
| 60 | 15 56 59 | 3eqtrrd | |- ( ( ph /\ m e. W ) -> ( ( j e. W |-> A ) ` m ) = ( ( ( k e. Z |-> B ) shift K ) ` m ) ) |
| 61 | 8 60 | sylan2br | |- ( ( ph /\ m e. ( ZZ>= ` ( M + K ) ) ) -> ( ( j e. W |-> A ) ` m ) = ( ( ( k e. Z |-> B ) shift K ) ` m ) ) |
| 62 | 7 61 | seqfeq | |- ( ph -> seq ( M + K ) ( + , ( j e. W |-> A ) ) = seq ( M + K ) ( + , ( ( k e. Z |-> B ) shift K ) ) ) |
| 63 | 62 | breq1d | |- ( ph -> ( seq ( M + K ) ( + , ( j e. W |-> A ) ) ~~> x <-> seq ( M + K ) ( + , ( ( k e. Z |-> B ) shift K ) ) ~~> x ) ) |
| 64 | 13 | isershft | |- ( ( M e. ZZ /\ K e. ZZ ) -> ( seq M ( + , ( k e. Z |-> B ) ) ~~> x <-> seq ( M + K ) ( + , ( ( k e. Z |-> B ) shift K ) ) ~~> x ) ) |
| 65 | 5 4 64 | syl2anc | |- ( ph -> ( seq M ( + , ( k e. Z |-> B ) ) ~~> x <-> seq ( M + K ) ( + , ( ( k e. Z |-> B ) shift K ) ) ~~> x ) ) |
| 66 | 63 65 | bitr4d | |- ( ph -> ( seq ( M + K ) ( + , ( j e. W |-> A ) ) ~~> x <-> seq M ( + , ( k e. Z |-> B ) ) ~~> x ) ) |
| 67 | 66 | iotabidv | |- ( ph -> ( iota x seq ( M + K ) ( + , ( j e. W |-> A ) ) ~~> x ) = ( iota x seq M ( + , ( k e. Z |-> B ) ) ~~> x ) ) |
| 68 | df-fv | |- ( ~~> ` seq ( M + K ) ( + , ( j e. W |-> A ) ) ) = ( iota x seq ( M + K ) ( + , ( j e. W |-> A ) ) ~~> x ) |
|
| 69 | df-fv | |- ( ~~> ` seq M ( + , ( k e. Z |-> B ) ) ) = ( iota x seq M ( + , ( k e. Z |-> B ) ) ~~> x ) |
|
| 70 | 67 68 69 | 3eqtr4g | |- ( ph -> ( ~~> ` seq ( M + K ) ( + , ( j e. W |-> A ) ) ) = ( ~~> ` seq M ( + , ( k e. Z |-> B ) ) ) ) |
| 71 | eqidd | |- ( ( ph /\ m e. W ) -> ( ( j e. W |-> A ) ` m ) = ( ( j e. W |-> A ) ` m ) ) |
|
| 72 | 6 | fmpttd | |- ( ph -> ( j e. W |-> A ) : W --> CC ) |
| 73 | 72 | ffvelcdmda | |- ( ( ph /\ m e. W ) -> ( ( j e. W |-> A ) ` m ) e. CC ) |
| 74 | 2 7 71 73 | isum | |- ( ph -> sum_ m e. W ( ( j e. W |-> A ) ` m ) = ( ~~> ` seq ( M + K ) ( + , ( j e. W |-> A ) ) ) ) |
| 75 | eqidd | |- ( ( ph /\ n e. Z ) -> ( ( k e. Z |-> B ) ` n ) = ( ( k e. Z |-> B ) ` n ) ) |
|
| 76 | 29 | ralrimiva | |- ( ph -> A. k e. Z ( K + k ) e. W ) |
| 77 | 38 | eleq1d | |- ( k = n -> ( ( K + k ) e. W <-> ( K + n ) e. W ) ) |
| 78 | 77 | rspccva | |- ( ( A. k e. Z ( K + k ) e. W /\ n e. Z ) -> ( K + n ) e. W ) |
| 79 | 76 78 | sylan | |- ( ( ph /\ n e. Z ) -> ( K + n ) e. W ) |
| 80 | ffvelcdm | |- ( ( ( j e. W |-> A ) : W --> CC /\ ( K + n ) e. W ) -> ( ( j e. W |-> A ) ` ( K + n ) ) e. CC ) |
|
| 81 | 72 79 80 | syl2an2r | |- ( ( ph /\ n e. Z ) -> ( ( j e. W |-> A ) ` ( K + n ) ) e. CC ) |
| 82 | 42 81 | eqeltrd | |- ( ( ph /\ n e. Z ) -> ( ( k e. Z |-> B ) ` n ) e. CC ) |
| 83 | 1 5 75 82 | isum | |- ( ph -> sum_ n e. Z ( ( k e. Z |-> B ) ` n ) = ( ~~> ` seq M ( + , ( k e. Z |-> B ) ) ) ) |
| 84 | 70 74 83 | 3eqtr4d | |- ( ph -> sum_ m e. W ( ( j e. W |-> A ) ` m ) = sum_ n e. Z ( ( k e. Z |-> B ) ` n ) ) |
| 85 | sumfc | |- sum_ m e. W ( ( j e. W |-> A ) ` m ) = sum_ j e. W A |
|
| 86 | sumfc | |- sum_ n e. Z ( ( k e. Z |-> B ) ` n ) = sum_ k e. Z B |
|
| 87 | 84 85 86 | 3eqtr3g | |- ( ph -> sum_ j e. W A = sum_ k e. Z B ) |