This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a ball. (Contributed by NM, 2-Sep-2006) (Revised by Mario Carneiro, 11-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elbl | |- ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) -> ( A e. ( P ( ball ` D ) R ) <-> ( A e. X /\ ( P D A ) < R ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | blval | |- ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) -> ( P ( ball ` D ) R ) = { x e. X | ( P D x ) < R } ) |
|
| 2 | 1 | eleq2d | |- ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) -> ( A e. ( P ( ball ` D ) R ) <-> A e. { x e. X | ( P D x ) < R } ) ) |
| 3 | oveq2 | |- ( x = A -> ( P D x ) = ( P D A ) ) |
|
| 4 | 3 | breq1d | |- ( x = A -> ( ( P D x ) < R <-> ( P D A ) < R ) ) |
| 5 | 4 | elrab | |- ( A e. { x e. X | ( P D x ) < R } <-> ( A e. X /\ ( P D A ) < R ) ) |
| 6 | 2 5 | bitrdi | |- ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) -> ( A e. ( P ( ball ` D ) R ) <-> ( A e. X /\ ( P D A ) < R ) ) ) |