This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Function-builder for derivative: derivative of the identity. (Contributed by Mario Carneiro, 1-Sep-2014) (Revised by Mario Carneiro, 11-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | dvmptid.1 | |- ( ph -> S e. { RR , CC } ) |
|
| Assertion | dvmptid | |- ( ph -> ( S _D ( x e. S |-> x ) ) = ( x e. S |-> 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvmptid.1 | |- ( ph -> S e. { RR , CC } ) |
|
| 2 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 3 | 2 | cnfldtopon | |- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
| 4 | toponmax | |- ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) -> CC e. ( TopOpen ` CCfld ) ) |
|
| 5 | 3 4 | mp1i | |- ( ph -> CC e. ( TopOpen ` CCfld ) ) |
| 6 | recnprss | |- ( S e. { RR , CC } -> S C_ CC ) |
|
| 7 | 1 6 | syl | |- ( ph -> S C_ CC ) |
| 8 | dfss2 | |- ( S C_ CC <-> ( S i^i CC ) = S ) |
|
| 9 | 7 8 | sylib | |- ( ph -> ( S i^i CC ) = S ) |
| 10 | simpr | |- ( ( ph /\ x e. CC ) -> x e. CC ) |
|
| 11 | 1cnd | |- ( ( ph /\ x e. CC ) -> 1 e. CC ) |
|
| 12 | mptresid | |- ( _I |` CC ) = ( x e. CC |-> x ) |
|
| 13 | 12 | eqcomi | |- ( x e. CC |-> x ) = ( _I |` CC ) |
| 14 | 13 | oveq2i | |- ( CC _D ( x e. CC |-> x ) ) = ( CC _D ( _I |` CC ) ) |
| 15 | dvid | |- ( CC _D ( _I |` CC ) ) = ( CC X. { 1 } ) |
|
| 16 | fconstmpt | |- ( CC X. { 1 } ) = ( x e. CC |-> 1 ) |
|
| 17 | 14 15 16 | 3eqtri | |- ( CC _D ( x e. CC |-> x ) ) = ( x e. CC |-> 1 ) |
| 18 | 17 | a1i | |- ( ph -> ( CC _D ( x e. CC |-> x ) ) = ( x e. CC |-> 1 ) ) |
| 19 | 2 1 5 9 10 11 18 | dvmptres3 | |- ( ph -> ( S _D ( x e. S |-> x ) ) = ( x e. S |-> 1 ) ) |