This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A continuous complex function's domain and codomain. (Contributed by Paul Chapman, 17-Jan-2008) (Revised by Mario Carneiro, 25-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cncff | |- ( F e. ( A -cn-> B ) -> F : A --> B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cncfrss | |- ( F e. ( A -cn-> B ) -> A C_ CC ) |
|
| 2 | cncfrss2 | |- ( F e. ( A -cn-> B ) -> B C_ CC ) |
|
| 3 | elcncf | |- ( ( A C_ CC /\ B C_ CC ) -> ( F e. ( A -cn-> B ) <-> ( F : A --> B /\ A. x e. A A. y e. RR+ E. z e. RR+ A. w e. A ( ( abs ` ( x - w ) ) < z -> ( abs ` ( ( F ` x ) - ( F ` w ) ) ) < y ) ) ) ) |
|
| 4 | 1 2 3 | syl2anc | |- ( F e. ( A -cn-> B ) -> ( F e. ( A -cn-> B ) <-> ( F : A --> B /\ A. x e. A A. y e. RR+ E. z e. RR+ A. w e. A ( ( abs ` ( x - w ) ) < z -> ( abs ` ( ( F ` x ) - ( F ` w ) ) ) < y ) ) ) ) |
| 5 | 4 | ibi | |- ( F e. ( A -cn-> B ) -> ( F : A --> B /\ A. x e. A A. y e. RR+ E. z e. RR+ A. w e. A ( ( abs ` ( x - w ) ) < z -> ( abs ` ( ( F ` x ) - ( F ` w ) ) ) < y ) ) ) |
| 6 | 5 | simpld | |- ( F e. ( A -cn-> B ) -> F : A --> B ) |