This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The number 1 is real. This used to be one of our postulates for complex numbers, but Eric Schmidt discovered that it could be derived from a weaker postulate, ax-1cn , by exploiting properties of the imaginary unit _i . (Contributed by Eric Schmidt, 11-Apr-2007) (Revised by Scott Fenton, 3-Jan-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 1re | |- 1 e. RR |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1ne0 | |- 1 =/= 0 |
|
| 2 | ax-1cn | |- 1 e. CC |
|
| 3 | cnre | |- ( 1 e. CC -> E. a e. RR E. b e. RR 1 = ( a + ( _i x. b ) ) ) |
|
| 4 | 2 3 | ax-mp | |- E. a e. RR E. b e. RR 1 = ( a + ( _i x. b ) ) |
| 5 | neeq1 | |- ( 1 = ( a + ( _i x. b ) ) -> ( 1 =/= 0 <-> ( a + ( _i x. b ) ) =/= 0 ) ) |
|
| 6 | 5 | biimpcd | |- ( 1 =/= 0 -> ( 1 = ( a + ( _i x. b ) ) -> ( a + ( _i x. b ) ) =/= 0 ) ) |
| 7 | 0cn | |- 0 e. CC |
|
| 8 | cnre | |- ( 0 e. CC -> E. c e. RR E. d e. RR 0 = ( c + ( _i x. d ) ) ) |
|
| 9 | 7 8 | ax-mp | |- E. c e. RR E. d e. RR 0 = ( c + ( _i x. d ) ) |
| 10 | neeq2 | |- ( 0 = ( c + ( _i x. d ) ) -> ( ( a + ( _i x. b ) ) =/= 0 <-> ( a + ( _i x. b ) ) =/= ( c + ( _i x. d ) ) ) ) |
|
| 11 | 10 | biimpcd | |- ( ( a + ( _i x. b ) ) =/= 0 -> ( 0 = ( c + ( _i x. d ) ) -> ( a + ( _i x. b ) ) =/= ( c + ( _i x. d ) ) ) ) |
| 12 | 11 | reximdv | |- ( ( a + ( _i x. b ) ) =/= 0 -> ( E. d e. RR 0 = ( c + ( _i x. d ) ) -> E. d e. RR ( a + ( _i x. b ) ) =/= ( c + ( _i x. d ) ) ) ) |
| 13 | 12 | reximdv | |- ( ( a + ( _i x. b ) ) =/= 0 -> ( E. c e. RR E. d e. RR 0 = ( c + ( _i x. d ) ) -> E. c e. RR E. d e. RR ( a + ( _i x. b ) ) =/= ( c + ( _i x. d ) ) ) ) |
| 14 | 6 9 13 | syl6mpi | |- ( 1 =/= 0 -> ( 1 = ( a + ( _i x. b ) ) -> E. c e. RR E. d e. RR ( a + ( _i x. b ) ) =/= ( c + ( _i x. d ) ) ) ) |
| 15 | 14 | reximdv | |- ( 1 =/= 0 -> ( E. b e. RR 1 = ( a + ( _i x. b ) ) -> E. b e. RR E. c e. RR E. d e. RR ( a + ( _i x. b ) ) =/= ( c + ( _i x. d ) ) ) ) |
| 16 | 15 | reximdv | |- ( 1 =/= 0 -> ( E. a e. RR E. b e. RR 1 = ( a + ( _i x. b ) ) -> E. a e. RR E. b e. RR E. c e. RR E. d e. RR ( a + ( _i x. b ) ) =/= ( c + ( _i x. d ) ) ) ) |
| 17 | 4 16 | mpi | |- ( 1 =/= 0 -> E. a e. RR E. b e. RR E. c e. RR E. d e. RR ( a + ( _i x. b ) ) =/= ( c + ( _i x. d ) ) ) |
| 18 | id | |- ( a = c -> a = c ) |
|
| 19 | oveq2 | |- ( b = d -> ( _i x. b ) = ( _i x. d ) ) |
|
| 20 | 18 19 | oveqan12d | |- ( ( a = c /\ b = d ) -> ( a + ( _i x. b ) ) = ( c + ( _i x. d ) ) ) |
| 21 | 20 | expcom | |- ( b = d -> ( a = c -> ( a + ( _i x. b ) ) = ( c + ( _i x. d ) ) ) ) |
| 22 | 21 | necon3d | |- ( b = d -> ( ( a + ( _i x. b ) ) =/= ( c + ( _i x. d ) ) -> a =/= c ) ) |
| 23 | 22 | com12 | |- ( ( a + ( _i x. b ) ) =/= ( c + ( _i x. d ) ) -> ( b = d -> a =/= c ) ) |
| 24 | 23 | necon3bd | |- ( ( a + ( _i x. b ) ) =/= ( c + ( _i x. d ) ) -> ( -. a =/= c -> b =/= d ) ) |
| 25 | 24 | orrd | |- ( ( a + ( _i x. b ) ) =/= ( c + ( _i x. d ) ) -> ( a =/= c \/ b =/= d ) ) |
| 26 | neeq1 | |- ( x = a -> ( x =/= y <-> a =/= y ) ) |
|
| 27 | neeq2 | |- ( y = c -> ( a =/= y <-> a =/= c ) ) |
|
| 28 | 26 27 | rspc2ev | |- ( ( a e. RR /\ c e. RR /\ a =/= c ) -> E. x e. RR E. y e. RR x =/= y ) |
| 29 | 28 | 3expia | |- ( ( a e. RR /\ c e. RR ) -> ( a =/= c -> E. x e. RR E. y e. RR x =/= y ) ) |
| 30 | 29 | ad2ant2r | |- ( ( ( a e. RR /\ b e. RR ) /\ ( c e. RR /\ d e. RR ) ) -> ( a =/= c -> E. x e. RR E. y e. RR x =/= y ) ) |
| 31 | neeq1 | |- ( x = b -> ( x =/= y <-> b =/= y ) ) |
|
| 32 | neeq2 | |- ( y = d -> ( b =/= y <-> b =/= d ) ) |
|
| 33 | 31 32 | rspc2ev | |- ( ( b e. RR /\ d e. RR /\ b =/= d ) -> E. x e. RR E. y e. RR x =/= y ) |
| 34 | 33 | 3expia | |- ( ( b e. RR /\ d e. RR ) -> ( b =/= d -> E. x e. RR E. y e. RR x =/= y ) ) |
| 35 | 34 | ad2ant2l | |- ( ( ( a e. RR /\ b e. RR ) /\ ( c e. RR /\ d e. RR ) ) -> ( b =/= d -> E. x e. RR E. y e. RR x =/= y ) ) |
| 36 | 30 35 | jaod | |- ( ( ( a e. RR /\ b e. RR ) /\ ( c e. RR /\ d e. RR ) ) -> ( ( a =/= c \/ b =/= d ) -> E. x e. RR E. y e. RR x =/= y ) ) |
| 37 | 25 36 | syl5 | |- ( ( ( a e. RR /\ b e. RR ) /\ ( c e. RR /\ d e. RR ) ) -> ( ( a + ( _i x. b ) ) =/= ( c + ( _i x. d ) ) -> E. x e. RR E. y e. RR x =/= y ) ) |
| 38 | 37 | rexlimdvva | |- ( ( a e. RR /\ b e. RR ) -> ( E. c e. RR E. d e. RR ( a + ( _i x. b ) ) =/= ( c + ( _i x. d ) ) -> E. x e. RR E. y e. RR x =/= y ) ) |
| 39 | 38 | rexlimivv | |- ( E. a e. RR E. b e. RR E. c e. RR E. d e. RR ( a + ( _i x. b ) ) =/= ( c + ( _i x. d ) ) -> E. x e. RR E. y e. RR x =/= y ) |
| 40 | 1 17 39 | mp2b | |- E. x e. RR E. y e. RR x =/= y |
| 41 | eqtr3 | |- ( ( x = 0 /\ y = 0 ) -> x = y ) |
|
| 42 | 41 | ex | |- ( x = 0 -> ( y = 0 -> x = y ) ) |
| 43 | 42 | necon3d | |- ( x = 0 -> ( x =/= y -> y =/= 0 ) ) |
| 44 | neeq1 | |- ( z = y -> ( z =/= 0 <-> y =/= 0 ) ) |
|
| 45 | 44 | rspcev | |- ( ( y e. RR /\ y =/= 0 ) -> E. z e. RR z =/= 0 ) |
| 46 | 45 | expcom | |- ( y =/= 0 -> ( y e. RR -> E. z e. RR z =/= 0 ) ) |
| 47 | 43 46 | syl6 | |- ( x = 0 -> ( x =/= y -> ( y e. RR -> E. z e. RR z =/= 0 ) ) ) |
| 48 | 47 | com23 | |- ( x = 0 -> ( y e. RR -> ( x =/= y -> E. z e. RR z =/= 0 ) ) ) |
| 49 | 48 | adantld | |- ( x = 0 -> ( ( x e. RR /\ y e. RR ) -> ( x =/= y -> E. z e. RR z =/= 0 ) ) ) |
| 50 | neeq1 | |- ( z = x -> ( z =/= 0 <-> x =/= 0 ) ) |
|
| 51 | 50 | rspcev | |- ( ( x e. RR /\ x =/= 0 ) -> E. z e. RR z =/= 0 ) |
| 52 | 51 | expcom | |- ( x =/= 0 -> ( x e. RR -> E. z e. RR z =/= 0 ) ) |
| 53 | 52 | adantrd | |- ( x =/= 0 -> ( ( x e. RR /\ y e. RR ) -> E. z e. RR z =/= 0 ) ) |
| 54 | 53 | a1dd | |- ( x =/= 0 -> ( ( x e. RR /\ y e. RR ) -> ( x =/= y -> E. z e. RR z =/= 0 ) ) ) |
| 55 | 49 54 | pm2.61ine | |- ( ( x e. RR /\ y e. RR ) -> ( x =/= y -> E. z e. RR z =/= 0 ) ) |
| 56 | 55 | rexlimivv | |- ( E. x e. RR E. y e. RR x =/= y -> E. z e. RR z =/= 0 ) |
| 57 | ax-rrecex | |- ( ( z e. RR /\ z =/= 0 ) -> E. x e. RR ( z x. x ) = 1 ) |
|
| 58 | remulcl | |- ( ( z e. RR /\ x e. RR ) -> ( z x. x ) e. RR ) |
|
| 59 | 58 | adantlr | |- ( ( ( z e. RR /\ z =/= 0 ) /\ x e. RR ) -> ( z x. x ) e. RR ) |
| 60 | eleq1 | |- ( ( z x. x ) = 1 -> ( ( z x. x ) e. RR <-> 1 e. RR ) ) |
|
| 61 | 59 60 | syl5ibcom | |- ( ( ( z e. RR /\ z =/= 0 ) /\ x e. RR ) -> ( ( z x. x ) = 1 -> 1 e. RR ) ) |
| 62 | 61 | rexlimdva | |- ( ( z e. RR /\ z =/= 0 ) -> ( E. x e. RR ( z x. x ) = 1 -> 1 e. RR ) ) |
| 63 | 57 62 | mpd | |- ( ( z e. RR /\ z =/= 0 ) -> 1 e. RR ) |
| 64 | 63 | rexlimiva | |- ( E. z e. RR z =/= 0 -> 1 e. RR ) |
| 65 | 40 56 64 | mp2b | |- 1 e. RR |