This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduction from equality to equivalence of equalities. (Contributed by NM, 27-Dec-1993) Reduce dependencies on axioms. (Revised by Wolf Lammen, 5-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | eqeq1d.1 | |- ( ph -> A = B ) |
|
| Assertion | eqeq1d | |- ( ph -> ( A = C <-> B = C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1d.1 | |- ( ph -> A = B ) |
|
| 2 | dfcleq | |- ( A = B <-> A. x ( x e. A <-> x e. B ) ) |
|
| 3 | 2 | biimpi | |- ( A = B -> A. x ( x e. A <-> x e. B ) ) |
| 4 | bibi1 | |- ( ( x e. A <-> x e. B ) -> ( ( x e. A <-> x e. C ) <-> ( x e. B <-> x e. C ) ) ) |
|
| 5 | 4 | alimi | |- ( A. x ( x e. A <-> x e. B ) -> A. x ( ( x e. A <-> x e. C ) <-> ( x e. B <-> x e. C ) ) ) |
| 6 | albi | |- ( A. x ( ( x e. A <-> x e. C ) <-> ( x e. B <-> x e. C ) ) -> ( A. x ( x e. A <-> x e. C ) <-> A. x ( x e. B <-> x e. C ) ) ) |
|
| 7 | 1 3 5 6 | 4syl | |- ( ph -> ( A. x ( x e. A <-> x e. C ) <-> A. x ( x e. B <-> x e. C ) ) ) |
| 8 | dfcleq | |- ( A = C <-> A. x ( x e. A <-> x e. C ) ) |
|
| 9 | dfcleq | |- ( B = C <-> A. x ( x e. B <-> x e. C ) ) |
|
| 10 | 7 8 9 | 3bitr4g | |- ( ph -> ( A = C <-> B = C ) ) |