This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The topology of the complex numbers. (Contributed by Mario Carneiro, 28-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cnfldtopn.1 | |- J = ( TopOpen ` CCfld ) |
|
| Assertion | cnfldtopn | |- J = ( MetOpen ` ( abs o. - ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnfldtopn.1 | |- J = ( TopOpen ` CCfld ) |
|
| 2 | cnxmet | |- ( abs o. - ) e. ( *Met ` CC ) |
|
| 3 | eqid | |- ( MetOpen ` ( abs o. - ) ) = ( MetOpen ` ( abs o. - ) ) |
|
| 4 | 3 | mopntopon | |- ( ( abs o. - ) e. ( *Met ` CC ) -> ( MetOpen ` ( abs o. - ) ) e. ( TopOn ` CC ) ) |
| 5 | cnfldbas | |- CC = ( Base ` CCfld ) |
|
| 6 | cnfldtset | |- ( MetOpen ` ( abs o. - ) ) = ( TopSet ` CCfld ) |
|
| 7 | 5 6 | topontopn | |- ( ( MetOpen ` ( abs o. - ) ) e. ( TopOn ` CC ) -> ( MetOpen ` ( abs o. - ) ) = ( TopOpen ` CCfld ) ) |
| 8 | 2 4 7 | mp2b | |- ( MetOpen ` ( abs o. - ) ) = ( TopOpen ` CCfld ) |
| 9 | 1 8 | eqtr4i | |- J = ( MetOpen ` ( abs o. - ) ) |