This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Function-builder for derivative, product rule for negatives. (Contributed by Mario Carneiro, 1-Sep-2014) (Revised by Mario Carneiro, 11-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvmptadd.s | |- ( ph -> S e. { RR , CC } ) |
|
| dvmptadd.a | |- ( ( ph /\ x e. X ) -> A e. CC ) |
||
| dvmptadd.b | |- ( ( ph /\ x e. X ) -> B e. V ) |
||
| dvmptadd.da | |- ( ph -> ( S _D ( x e. X |-> A ) ) = ( x e. X |-> B ) ) |
||
| Assertion | dvmptneg | |- ( ph -> ( S _D ( x e. X |-> -u A ) ) = ( x e. X |-> -u B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvmptadd.s | |- ( ph -> S e. { RR , CC } ) |
|
| 2 | dvmptadd.a | |- ( ( ph /\ x e. X ) -> A e. CC ) |
|
| 3 | dvmptadd.b | |- ( ( ph /\ x e. X ) -> B e. V ) |
|
| 4 | dvmptadd.da | |- ( ph -> ( S _D ( x e. X |-> A ) ) = ( x e. X |-> B ) ) |
|
| 5 | neg1cn | |- -u 1 e. CC |
|
| 6 | 5 | a1i | |- ( ph -> -u 1 e. CC ) |
| 7 | 1 2 3 4 6 | dvmptcmul | |- ( ph -> ( S _D ( x e. X |-> ( -u 1 x. A ) ) ) = ( x e. X |-> ( -u 1 x. B ) ) ) |
| 8 | 2 | mulm1d | |- ( ( ph /\ x e. X ) -> ( -u 1 x. A ) = -u A ) |
| 9 | 8 | mpteq2dva | |- ( ph -> ( x e. X |-> ( -u 1 x. A ) ) = ( x e. X |-> -u A ) ) |
| 10 | 9 | oveq2d | |- ( ph -> ( S _D ( x e. X |-> ( -u 1 x. A ) ) ) = ( S _D ( x e. X |-> -u A ) ) ) |
| 11 | 1 2 3 4 | dvmptcl | |- ( ( ph /\ x e. X ) -> B e. CC ) |
| 12 | 11 | mulm1d | |- ( ( ph /\ x e. X ) -> ( -u 1 x. B ) = -u B ) |
| 13 | 12 | mpteq2dva | |- ( ph -> ( x e. X |-> ( -u 1 x. B ) ) = ( x e. X |-> -u B ) ) |
| 14 | 7 10 13 | 3eqtr3d | |- ( ph -> ( S _D ( x e. X |-> -u A ) ) = ( x e. X |-> -u B ) ) |